Skip to main content
Log in

Nanoscale FeS2 (Pyrite) as a Sustainable Thermoelectric Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have synthesized undoped, Co-doped (up to 5%), and Se-doped (up to 4%) FeS2 materials by mechanical alloying in a planetary ball mill and investigated their thermoelectric properties from room temperature (RT) to 600 K. With decreasing particle size, the undoped FeS2 samples showed higher electrical conductivity, from 0.02 S cm−1 for particles with 70 nm grain size up to 3.1 S cm−1 for the sample with grain size of 16 nm. The Seebeck coefficient of the undoped samples showed a decrease with further grinding, from 128 μV K−1 at RT for the sample with 70-nm grains down to 101 μV K−1 for the sample with grain size of 16 nm. The thermal conductivity of the 16-nm undoped sample lay within the range from 1.3 W m−1 K−1 at RT to a minimal value of 1.2 W m−1 K−1 at 600 K. All doped samples showed improved thermoelectric behavior at 600 K compared with the undoped sample with 16 nm particle size. Cobalt doping modified the p-type semiconducting behavior to n-type and increased the thermal conductivity (2.1 W m−1 K−1) but improved the electrical conductivity (41 S cm−1) and Seebeck coefficient (-129 μV K−1). Isovalent selenium doping led to a slightly higher thermal conductivity (1.7 W m−1 K−1) as well as to an improved electrical conductivity (26 S cm−1) and Seebeck coefficient (110 μV K−1). The ZT value of FeS2 was increased by a factor of five by Co doping and by a factor of three by Se doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Homm and P.J. Klar, Phys. Status Solidi Rapid Res. Lett. 5, 324 (2011).

    Article  Google Scholar 

  2. J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, and M. Law, J. Am. Chem. Soc. 133, 716 (2011).

    Article  Google Scholar 

  3. A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch, Sol. Energy Mater. Sol. Cells 29, 289 (1993).

    Article  Google Scholar 

  4. E. Strauss, D. Golodnitsky, and E. Peled, Electrochim. Acta 45, 1519 (2000).

    Article  Google Scholar 

  5. T. Harada, J. Phys. Soc. Jpn. 67, 1352 (1998).

    Article  Google Scholar 

  6. K. Kato, Y. Okamoto, J. Morimoto, and T. Miyakawa, J. Mater. Sci. Lett. 16, 914 (1997).

    Article  Google Scholar 

  7. S.-C. Hsiao, C.-M. Hsu, S.-Y. Chen, Y.-H. Perng, Y.-L. Chueh, L.-J. Chen, and L.-H. Chou, Mater. Lett. 75, 152 (2012).

    Article  Google Scholar 

  8. W. Li, M. Döblinger, A. Vaneski, A.L. Rogach, F. Jäckel, and J. Feldmann, J. Mater. Chem. 21, 17946 (2011).

    Article  Google Scholar 

  9. L. Hicks and M. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  Google Scholar 

  10. D. Lichtenberger, K. Ellmer, R. Schieck, and S. Fiechter, Appl. Surf. Sci. 71, 583 (1993).

    Article  Google Scholar 

  11. S. Nakamura and A. Yamamoto, Sol. Energy Mater. Sol. Cells 65, 79 (2001).

    Article  Google Scholar 

  12. G. Willeke, O. Blenk, C. Kloc, and E. Bucher, J. Alloys Compd. 178, 181 (1992).

    Article  Google Scholar 

  13. S. Butler and R. Bouchard, J. Cryst. Growth 10, 163 (1971).

    Article  Google Scholar 

  14. H. Duan, Y. Zheng, and Y. Dong, Mater. Res. Bull. 39, 1861 (2004).

    Article  Google Scholar 

  15. S. Kar and S. Chaudhuri, Chem. Phys. Lett. 398, 22 (2004).

    Article  Google Scholar 

  16. E.J. Kim and B. Batchelor, Mater. Res. Bull. 44, 1553 (2009).

    Article  Google Scholar 

  17. D.V. Talapin, J.-S. Lee, M.V. Kovalenko, and E.V. Shevchenko, Chem. Rev. 110, 389 (2010).

    Article  Google Scholar 

  18. Y. Bai, J. Yeom, M. Yang, S. Cha, K. Sun, and N.A. Kotov, J. Phys. Chem. C 117, 2567 (2013).

    Article  Google Scholar 

  19. S.W. Lehner, K.S. Savage, and J.C. Ayers, J. Cryst. Growth 286, 306 (2006).

    Article  Google Scholar 

  20. S. Guo, D.P. Young, R.T. Macaluso, D.A. Browne, N.L. Henderson, J.Y. Chan, L.L. Henry, and J.F. DiTusa, Phys. Rev. B 81, 1 (2010).

    Google Scholar 

  21. S. Guo, D. Young, R. Macaluso, D. Browne, N. Henderson, J. Chan, L. Henry, and J. DiTusa, Phys. Rev. Lett. 100, 017209 (2008).

    Article  Google Scholar 

  22. B. Thomas, K. Ellmer, W. Bohne, J. Röhrich, M. Kunst, and H. Tributsch, Solid State Commun. 111, 235 (1999).

    Article  Google Scholar 

  23. P. Díaz-Chao, I.J. Ferrer, and C. Sánchez, Thin Solid Films 516, 7116 (2008).

    Article  Google Scholar 

  24. R.J. Bouchard, Mater. Res. Bull 3, 563 (1968).

    Article  Google Scholar 

  25. J. Zhu, W. Zuo, S. Liang, and B. Zheng, Appl. Geochem. 19, 461 (2004).

    Article  Google Scholar 

  26. A. Diener and R. Köppe, J. Cryst. Growth 349, 55 (2012).

    Article  Google Scholar 

  27. P.P. Chin, J. Ding, J.B. Yi, and B.H. Liu, J. Alloys Compd. 390, 255 (2005).

    Article  Google Scholar 

  28. J. Jiang, R. Larsen, R. Lin, S. Mørup, I. Chorkendorff, K. Nielsen, K. Hansen, and K. West, J. Solid State Chem. 138, 114 (1998).

    Article  Google Scholar 

  29. P. Abraitis, Int. J. Miner. Process. 74, 41 (2004).

    Article  Google Scholar 

  30. Y.N. Zhang, J. Hu, M. Law, and R.Q. Wu, Phys. Rev. B 85, 085314 (2012).

    Article  Google Scholar 

  31. D. Alfonso, J. Phys. Chem. C 114, 8971 (2010).

    Article  Google Scholar 

  32. A. Krishnamoorthy, F.W. Herbert, S. Yip, K.J. Van Vliet, and B. Yildiz, J. Phys. 25, 045004 (2013).

    Google Scholar 

  33. X. Zhang, M. Manno, A. Baruth, M. Johnson, E.S. Aydil, and C. Leighton, ACS Nano. 7, 2781 (2013).

    Article  Google Scholar 

  34. M. Cabán-Acevedo, D. Liang, K.S. Chew, J.P. Degrave, N. S. Kaiser, and S. Jin, ACS Nano. 7, 1731 (2013).

    Google Scholar 

  35. J.R. Ares, A. Pascual, I.J. Ferrer, and C.R. Sánchez, Thin Solid Films 451–452, 233 (2004).

    Article  Google Scholar 

  36. J. Oertel, K. Ellmer, W. Bohne, J. Röhrich, and H. Tributsch, J. Cryst. Growth 198–199, 1205 (1999).

    Article  Google Scholar 

  37. P.A. Popov, P.P. Fedorov, and S.V. Kuznetsov, Crystallogr. Rep. 58, 319 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Uhlig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlig, C., Guenes, E., Schulze, A.S. et al. Nanoscale FeS2 (Pyrite) as a Sustainable Thermoelectric Material. J. Electron. Mater. 43, 2362–2370 (2014). https://doi.org/10.1007/s11664-014-3065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3065-x

Keywords

Navigation