Skip to main content
Log in

Effects of Thickness and Annealing on Optoelectronic Properties of Electrodeposited ZnS Thin Films for Photonic Device Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thin layers of ZnS with thicknesses of 400 nm, 500 nm, and 700 nm have been electrodeposited on glass/fluorine-doped tin oxide substrates using a simple two-electrode setup under similar conditions. Structural characterization of the layers using x-ray diffraction (XRD) measurements showed that they were amorphous. The results of optical characterization carried out in the wavelength range of 315 nm to 800 nm using spectrophotometry revealed that the optical properties of the layers are strongly influenced by the film thickness as well as annealing conditions. The values of the refractive index, extinction coefficient, absorption coefficient, and dielectric constant obtained from normal-incidence transmittance spectra were generally lower after annealing, showing also the influence of postdeposition annealing on the deposited ZnS layers. Electrical characterization of the layers, using direct-current current–voltage measurement under dark conditions at room temperature, shows that the resistivity of the as-deposited and annealed layers is in the range of 1.4 × 104 Ω cm to 2.5 × 104 Ω cm and 2.5 × 104 Ω cm to 3.1 × 104 Ω cm, respectively. The results suggest that the optoelectronic properties can be tuned for particular applications by adjusting the thickness of the layers appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Andriesh, Semiconductors 32, 867 (1998).

    Article  Google Scholar 

  2. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, Vol. 3 (Hoboken, NJ: Wiley, 2007).

    Google Scholar 

  3. P.L. Jones, D.R. Cotton, and D. Moore, Thin Solid Films 88, 163 (1982).

    Article  Google Scholar 

  4. T.L. Chu and S.S. Chu, Solid-State Electron. 38, 533 (1995).

    Article  Google Scholar 

  5. K. Anuar, Z. Zainal, N. Saravanan, and N. Asikin, Mater. Sci. 44, 290 (2008).

    Article  Google Scholar 

  6. S.M. Sze, Physics of Semiconductor Devices, Vol. 2 (New Delhi: Wiley Eastern, 1985), p. 683.

    Google Scholar 

  7. X. Fang, Y. Bando, U.K. Gautam, T. Zhai, H. Zeng, X. Xu, M. Liao, and D. Golberg, Crit. Rev. Solid State Mater. Sci. 34, 190 (2009).

    Article  Google Scholar 

  8. J. Wu, W. Shen, H. Li, X. Liu, and P. Gu, Chin. Opt. Lett. (supplement) 8, 32 (2010).

    Article  Google Scholar 

  9. J. Videl, O. deMelo, O. Vigil, N. Lopez, G. Contreras-Puente, and O. Zelaya-Angel, Thin Solid Films 419, 118 (2002).

    Article  Google Scholar 

  10. D. Hariskos, S. Spiering, and M. Powalla, Thin Solid Films 480, 91 (2005).

    Google Scholar 

  11. K. Kassim, S. Nagalingam, H.S. Min, and N. Karrim, Arab. J. Chem. 3, 243 (2010).

    Article  Google Scholar 

  12. B.W. Sanders and A.H. Kitai, J. Cryst. Growth 100, 405 (1990).

    Article  Google Scholar 

  13. O.K. Echendu, A.R. Weerasinghe, D.G. Diso, F. Fauzi, and I.M. Dharmadasa, J. Electron. Mater. 42, 692 (2013). doi:10.1007/s11664-012-2393-y.

    Article  Google Scholar 

  14. Y.P.V. Subbaiah, P. Prathap, and K.T.R. Reddy, Appl. Surf. Sci. 253, 2409 (2006).

    Article  Google Scholar 

  15. M. Janai, D.D. Allred, D.C. Booth, and B.D. Seraphin, Sol. Energy Mater. Sol. Cells 1, 11 (1979).

    Article  Google Scholar 

  16. C. Kittel, Introduction to Solid State Physics, Vol. 8 (New York: Wiley, 2005), p. 430.

    Google Scholar 

  17. R.F. Shaw, W.Y. Liang, and A.D. Yoffe, J. Non-Cryst. Solids 4, 29 (1970).

    Article  Google Scholar 

  18. I.M. Dharmadasa, Advances in Thin Film Solar Cells (Singapore: Pan Stanford, 2012), p. 46.

    Book  Google Scholar 

  19. F. Gode, Physica B 406, 1653 (2011).

    Article  Google Scholar 

  20. S. Senthilkumaar and S.R. Thamil, Appl. Phys. A 94, 123 (2009).

    Article  Google Scholar 

  21. R.S. Quimby, Photonics and Lasers: An Introduction (Hoboken, NJ: Wiley, 2006), p. 259.

    Book  Google Scholar 

  22. S. Halas, Mater. Sci. (Poland) 24, 951 (2006).

    Google Scholar 

  23. R.C. Cheichei, E.A. Weiss, M.D. Dickey, and G.M. Whitesides, Angew. Chem. Int. Ed. 47, 142 (2008).

    Article  Google Scholar 

  24. K. Zanio, Semiconductors and Semimetals, Vol. 13 (New York: Academic, 1978), p. 148.

    Google Scholar 

  25. S. Dennison, J. Mater. Chem. 4, 41 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Echendu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echendu, O.K., Dharmadasa, I.M. Effects of Thickness and Annealing on Optoelectronic Properties of Electrodeposited ZnS Thin Films for Photonic Device Applications. J. Electron. Mater. 43, 791–801 (2014). https://doi.org/10.1007/s11664-013-2943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2943-y

Keywords

Navigation