Skip to main content
Log in

Thermal Conductivity Variation with Temperature for Lead-Free Ternary Eutectic Solders

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The variations of the thermal conductivity with temperature for the lead-free ternary eutectic solders Bi-42.73 wt.%Sn-1.03 wt.%Ag (Bi-Sn-Ag), Sn-3.5 wt.%Ag-0.9 wt.%Cu (Sn-Ag-Cu), Sn-6 wt.%Sb-5 wt.%Ag (Sn-Sb-Ag), Sn-42.8 wt.%Bi-0.04 wt.%Cu (Sn-Bi-Cu), and In-48.4 wt.%Sn-2.31 wt.%Ag (In-Sn-Ag) were measured using a linear heat flow apparatus. It was observed that the thermal conductivities of solid phases for the Bi-Sn-Ag, Sn-Ag-Cu, Sn-Sb-Ag, Sn-Bi-Cu, and In-Sn-Ag solders decrease linearly with increasing temperature. The thermal conductivities of the Bi-Sn-Ag, Sn-Ag-Cu, Sn-Sb-Ag, Sn-Bi-Cu, and In-Sn-Ag solders at their melting temperature were obtained as 17.89 ± 1.6 W/K-m, 49.89 ± 4.5 W/K-m, 41.96 ± 3.8 W/K-m, 20.03 ± 1.8 W/K-m, and 70.21 ± 6.3 W/K-m, respectively. The thermal temperature coefficients for the Bi-Sn-Ag, Sn-Ag-Cu, Sn-Sb-Ag, Sn-Bi-Cu, and In-Sn-Ag solders were also determined to be −2.894 × 10−3 K−1, −0.907 × 10−3 K−1, −1.246 × 10−3 K−1, −2.638 × 10−3 K−1, and −1.250 × 10−3 K−1, respectively, from plots of thermal conductivity versus temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wiedemann and R. Franz, Ann. Phys. Chem. 89, 497 (1853).

    Google Scholar 

  2. J.B. Biot, Traite de Physique, 669, (Paris, 1816).

  3. J.B.J. Fourier, The Analytical Theory of Heat (New York: Dover, 1955).

    Google Scholar 

  4. G.K. White, Experimental Techniques in Low-Temperature Physics (Oxford: Oxford University Press, 1959).

    Google Scholar 

  5. G.K. White, Thermal Conductivity, Vol. 1 (London: Academic, 1969), pp. 69–109.

    Google Scholar 

  6. C.H. Lees, Philos. Trans. R. Soc. Lond. A 208, 381 (1908).

    Article  Google Scholar 

  7. M.J. Laubitz, Thermal Conductivity, Vol. 1, ed. R.P. Type (London: Academic, 1969), pp. 111–183.

    Google Scholar 

  8. D.R. Flynn, Mechanical and Thermal Properties of Ceramics 303, ed. J.B. Wachtman, Jr. (Bedford: NBS Special Publication, 1969), pp. 63–123.

    Google Scholar 

  9. A. Berger, Compt. Rend. 105, 224 (1887).

    Google Scholar 

  10. A. Berget, J. Phys. Theor Appl. (Paris), 2,7, 503 (1888).

  11. The Physical Society’s Exhibition No. III (Engineer, 1935) pp. 159–168.

  12. L.D. Armstrong and T.M. Dauphinee, Can. J. Res. A 25, 357 (1947).

    Article  CAS  Google Scholar 

  13. D.A. Ditmars and D.C. Ginnings, Res. Natl. Bur. Stand. 59, 93 (1957).

    Article  CAS  Google Scholar 

  14. K. Honda and T. Simidu, Sci. Rep. (Tohoku Univ.) 1, 219 (1917).

    Google Scholar 

  15. F.N. Schofield, Proc. R. Soc. Lond. A 107, 206 (1925).

    Article  CAS  Google Scholar 

  16. R.W. Powell, Proc. R. Soc. Lond. A 46, 659 (1934).

    Article  CAS  Google Scholar 

  17. M.C. Flemings, Solidification Processing (New York: McGraw Hill, 1974).

    Google Scholar 

  18. E. Çadirli and M. Gündüz, J. Mater. Proc. Technol. 97, 74 (2000).

    Article  Google Scholar 

  19. E. Çadirli and M. Gündüz, J. Mater. Sci. 35, 3837 (2000).

    Article  Google Scholar 

  20. J. Shen, Y.C. Liu, H.X. Gao, C. Wei, and Y.Q. Yang, J. Electron. Mater. 34, 1591 (2005).

    Article  CAS  Google Scholar 

  21. J. Shen, Y.C. Liu, Y.J. Han, P.Z. Zhang, and H.X. Gao, J. Mater. Sci. Technol. 21, 827 (2005).

    CAS  Google Scholar 

  22. U.R. Kattner, JOM 54, 45 (2002).

    Article  CAS  Google Scholar 

  23. K.N. Tu, Solder Joint Technology Materials Properties and Reliability (New York: Springer, 2007).

    Google Scholar 

  24. http://www.williams-adv.com/packagingMaterials/lead-free-solder.php. Accessed 17 September 2013.

  25. Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, B. Willers, and S. Eckert, J. Alloy. Compd. 394, 63 (2005).

    Article  CAS  Google Scholar 

  26. E.V. Kalashnikov, Tech. Phys. 42, 330 (1997).

    Article  Google Scholar 

  27. S. Aksöz, Y. Ocak, K. Keşlioğlu, and N. Maraşli, Met. Mater. Int. 16, 507 (2010).

    Article  Google Scholar 

  28. Y. Kaygısız, Y. Ocak, S. Aksöz, N. Maraşli, K. Keşlioğlu, E. Çadırlı, and H. Kaya, Chem. Phys. Lett. 484, 219 (2010).

    Article  Google Scholar 

  29. Y. Ocak, S. Aksöz, N. Maraşli, and K. Keşlioğlu, Chem. Phys. Lett. 496, 263 (2010).

    Article  CAS  Google Scholar 

  30. Y. Ocak, S. Aksöz, N. Maraşli, and E. Çadirli, Fluid Phase Equilibr. 295, 60 (2010).

    Article  CAS  Google Scholar 

  31. Y. Kaygisiz, Y. Ocak, S. Aksöz, K. Keşlioğlu, and N. Maraşli, Thermochim. Acta 520, 25 (2011).

    Article  CAS  Google Scholar 

  32. S. Aksöz, E. öztürk, and N. Maraşli, Measurement 46, 161 (2013).

    Article  Google Scholar 

  33. Y.S. Touloukian, R.W. Powell, C.Y. Ho and P.G. Klemens, Thermal Conductivity Metallic Elements and Alloys (New York: IFI/Plenum, 1970), pp. 17a, 49, 149, 185, 408, 498.

  34. Y. Terada, K. Ohkubo, T. Mohri, and T. Suzuki, J. Alloy. Compd. 285, 233 (1999).

    Article  CAS  Google Scholar 

  35. S. Mhiaoui, F. Sar, and J.G. Gasser, J. Non-Cryst. Solids 353, 3628 (2007).

    Article  CAS  Google Scholar 

  36. Y. Ocak, S. Aksöz, N. Maraşli, and K. Keşlioğlu, J. Non-Cryst. Solids 356, 1795 (2010).

    Article  CAS  Google Scholar 

  37. S. Aksöz and N. Maraşli, J. Phys. Chem. Solids 73, 902 (2012).

    Article  Google Scholar 

  38. E. Öztürk, S. AksÖz, K. Keşlioğlu, and N. Maraşli, Thermochim. Acta 554, 63 (2013).

    Article  Google Scholar 

  39. M. Hansen, Constitution of Binary Alloys (New York: McGraw-Hill, 1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necmettin Maraşlı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksöz, N., Öztürk, E., Bayram, Ü. et al. Thermal Conductivity Variation with Temperature for Lead-Free Ternary Eutectic Solders. J. Electron. Mater. 42, 3573–3581 (2013). https://doi.org/10.1007/s11664-013-2748-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2748-z

Keywords

Navigation