Skip to main content
Log in

Thermal Decomposition of Thermoelectric Material CoSb3: A Thermogravimetry Kinetic Analysis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermal decomposition of the thermoelectric CoSb3 alloy was investigated using thermogravimetry (TG). TG curves obtained in inert gas flow with different heating rates were used to perform kinetic analysis based on the Arrhenius equation. Kinetic parameters, such as the effective activation energy, the pre-exponential factor, and the kinetic model function \( f(\alpha ) \), were obtained using the Freeman–Carroll method, the multiheating rates method, and the Coats–Redfern equation. The activation energy was found to be around 200 kJ/mol, and the reaction mechanism for the decomposition of CoSb3 alloy mostly obeys the second-order chemical decomposition process \( f(\alpha ) = (1 - \alpha )^{2} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew Chem. Int. Ed. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  2. L.E. Bell, Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  3. B.C. Sales, D. Mandrus, B.C. Chakoumakos, and K. Thompson, Phys. Rev. B 56, 15081 (1997).

    Article  CAS  Google Scholar 

  4. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  5. X.F. Tang, L.D. Chen, T. Goto, and T. Hirai, J. Mater. Res. 16, 837 (2001).

    Article  CAS  Google Scholar 

  6. X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  CAS  Google Scholar 

  7. P.X. Lu, F. Wu, H.L. Han, Q. Wang, Z.G. Shen, and X. Hu, J. Alloys Compd. 505, 255 (2010).

    Article  CAS  Google Scholar 

  8. V. Savchuk, A. Boulouz, S. Chakraborty, J. Schumann, and H. Vinzelberg, J. Appl. Phys. 92, 5319 (2002).

    Article  CAS  Google Scholar 

  9. J. Leszczynski, K.T. Wojciechowski, and A.L. Malecki, J. Therm. Anal. Calorim. 105, 211 (2011).

    Article  CAS  Google Scholar 

  10. X.G. Xia, P.F. Qiu, X. Shi, X.Y. Li, X.Y. Huang, and L.D. Chen, J. Electron. Mater. 41, 2225 (2012).

    Article  CAS  Google Scholar 

  11. G. J. Snyder, T. Caillat, (Workshop San Diego, California February 17, 2004).

  12. D.G. Zhao, C.W. Tian, Y.T. Liu, C.W. Zhan, and L.D. Chen, J. Alloys Compd. 509, 3166 (2011).

    Article  CAS  Google Scholar 

  13. P.X. Lu, Z.G. Shen, and X. Hu, J. Mater. Res. 24, 2873 (2009).

    Article  CAS  Google Scholar 

  14. E.S. Freeman and B. Carroll, J. Phys. Chem. 62, 394 (1958).

    Article  CAS  Google Scholar 

  15. D.L. Yang, H.W. Sun, H.X. Lu, Y.Q. Guo, X.J. Li, and X. Hu, Supercond. Sci. Technol. 16, 576 (2003).

    Article  CAS  Google Scholar 

  16. Z.L. Zhu, D.L. Yang, Y.Q. Guo, Q.Q. Liu, Z.S. Gao, and X. Hu, Physica C 383, 169 (2002).

    Article  CAS  Google Scholar 

  17. A.W. Coats and J.P. Redfern, Nature 201, 68 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, F., He, Q., Hu, D. et al. Thermal Decomposition of Thermoelectric Material CoSb3: A Thermogravimetry Kinetic Analysis. J. Electron. Mater. 42, 2574–2581 (2013). https://doi.org/10.1007/s11664-013-2633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2633-9

Keywords

Navigation