Skip to main content
Log in

Thermoelectric Performance of ZnO:Al/ZnO:(Al,In) Quantum Well Multilayer Structures as a Function of Indium Composition and Band-Gap Offset at High Operating Temperatures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study investigates the thermoelectric (TE) power factor for radiofrequency (RF)-sputtered n-type ZnO:Al/ZnO:(Al,In) multilayer quantum wells (QW) and the dependence on band-gap offset at high operating temperatures. The structures are 50 periods of 10-nm-thick barrier and well layers. The TE power factors for all films are promising (>20 × 10−4 W/m2 K); however, a decline in electronic transport is evident for each of the doped wells over a specific range of operating temperatures. This supports the need for optimum doping levels for a specific operating temperature range; e.g., 2 at.%, 5 at.%, and 8 at.% indium are optimum at 300 K to 600 K, 600 K to 725 K, and >725 K, respectively. A model has also been developed to calculate the QW electronic transport as a function of temperature and band-gap offset, which is subsequently related to doping concentration. This model confirms a loss in electrical conductivity due to charge carriers gaining enough kinetic energy to overcome the QW barrier, which results in multilayer hopping across well–barrier interfaces. In addition, film microstructure and interface roughness have been determined by x-ray and spectroscopy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Kuroda and J.P. Leburton, Phys. Rev. Lett. 101, 256805 (2008).

    Article  Google Scholar 

  2. T. Hendricks and W. Choate, US DOE, Industrial Technologies Program (2006).

  3. T.C. Harman, M.P. Walsh, B.P. LaForge, and G.W. Turner, J. Electron. Mater. 34, L19 (2005).

    Article  CAS  Google Scholar 

  4. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  CAS  Google Scholar 

  5. R. Venkatasubramanian, Phys. Rev. B 61, 3091 (2000).

    Article  CAS  Google Scholar 

  6. G.H. Dohler, Phys. Scr. 24, 430 (1981).

    Article  Google Scholar 

  7. C. LaBounty, A. Shakouri, and J. Bowers, J. Appl. Phys. 89, 4059 (2001).

    Article  CAS  Google Scholar 

  8. C.A. Howells, C. Watkins C, and R. Venkatasubramanian, ASME, 2nd Int. Conf., ES50462, Jacksonville, FL (2008).

  9. J.C. Caylor, K.D. Coonley, J.R. Stuart, T. Colpitts, and R. Venkatasubramanian, Appl. Phys. Lett. 87, 023105 (2005).

    Article  Google Scholar 

  10. M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).

    Article  CAS  Google Scholar 

  11. S. Teehan, H. Efstathiadis, and P. Haldar, J. Alloy. Compd. 509, 1094 (2011).

    Article  CAS  Google Scholar 

  12. A.V. Wagner, R.J. Foreman, L.J. Summers, J.C. Farmer, and T.C. Barbee Jr., Int. Conf. Thermo. Proc., Philadelphia, PA (1997), p. 465.

  13. N.B. Elsner and S. Ghamaty, Int. Conf. Thermo., Pasadena, CA (1996).

  14. Parratt, Phys. Rev. 95, 359 (1954).

  15. K.C. Je and C.H. Cho, J. Korean Phys. Soc. 54, 105 (2009).

    Article  CAS  Google Scholar 

  16. G. Chen, IEEE Trans. Component Packag. Technol. 29, 238 (2006).

    Google Scholar 

  17. M. Mazumder, T. Borca-Tasciuc, S. Teehan, E. Stinzianni, H. Efstathiadis, and S. Solovyov, J. Appl. Phys. 96, 093103 (2010).

    Google Scholar 

  18. C.B. Vining, J. Appl. Phys. 69, 331 (1991).

    Article  CAS  Google Scholar 

  19. G.P. Agrawal and N.K. Dutta, Semiconductor Lasers, 2nd ed. (New York: Springer, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Teehan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teehan, S., Efstathiadis, H. & Haldar, P. Thermoelectric Performance of ZnO:Al/ZnO:(Al,In) Quantum Well Multilayer Structures as a Function of Indium Composition and Band-Gap Offset at High Operating Temperatures. J. Electron. Mater. 41, 1831–1837 (2012). https://doi.org/10.1007/s11664-012-2084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2084-8

Keywords

Navigation