Skip to main content
Log in

Growth of Intermetallic Compounds in Thermosonic Copper Wire Bonding on Aluminum Metallization

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Interface evolution caused by thermal aging under different temperatures and durations was investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that approximately 30-nm-thick and discontinuous Cu-Al intermetallic compounds (IMCs) were present in the initial bonds before aging. Cu-Al IMCs grew under thermal aging with increasing aging time. The growth kinetics of the Cu-Al IMCs was correlated to the diffusion process during aging; their combined activation energy was estimated to be 1.01 eV. Initially, Al-rich Cu-Al IMCs formed in the as-bonded state and early stage of aging treatment. Cu9Al4 was identified by selected-area electron diffraction (SAD) as the only type of Cu-Al IMC present after thermal aging at 250°C for 100 h; this is attributed to the relatively short supply of aluminum to the interfacial reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.G. Harman, Wire Bonding in Microelectronics, Materials, Processes, Reliability, and Yield, 2nd ed. (New York: McGraw-Hill, 1997).

    Google Scholar 

  2. E. Philofsky, Solid State Electron. 13, 1391 (1970).

    Article  CAS  ADS  Google Scholar 

  3. G.Y. Jang, J.G. Duh, H. Takahashi, and D. Su, J. Electron. Mater. 35, 323 (2006).

    Article  CAS  ADS  Google Scholar 

  4. H. Ji, M. Li, C. Wang, and H.S. Bang, Mater. Sci. Eng. A 447, 111 (2007).

    Article  Google Scholar 

  5. H.S. Chang, J.X. Pon, K.C. Hsieh, and C.C. Chen, J. Electron. Mater. 30, 1171 (2001).

    Article  CAS  ADS  Google Scholar 

  6. S. Murali, J. Alloy Compd. 426, 200 (2006).

    Article  CAS  Google Scholar 

  7. S. Murali, N. Srikanth, and C.J. Vath, Mater. Lett. 58, 3096 (2004).

    Article  CAS  Google Scholar 

  8. N. Srikanth, S. Murali, Y.M. Wong, and C.J. Vath, Thin Solid Films 462–463, 339 (2004).

    Article  Google Scholar 

  9. S. Murali, N. Srikanth, Y.M. Wong, and C.J. Vath, J. Mater. Sci. 42, 615 (2007).

    Article  CAS  ADS  Google Scholar 

  10. C.D. Breach and F. Wulff, Microelectron. Reliab. 44, 973 (2004).

    Article  CAS  Google Scholar 

  11. A. Karpel, G. Gur, Z. Atzmon, and W. Kaplan, J. Mater. Sci. 42, 2334 (2007).

    Article  CAS  ADS  Google Scholar 

  12. P. Ratchev, S. Stoukatch, and B. Swinnen, Microelectron. Reliab. 46, 1315 (2006).

    Article  CAS  Google Scholar 

  13. S. Murali, N. Srikanth, and C.J. Vath, Mater. Res. Bull. 38, 637 (2003).

    Article  CAS  Google Scholar 

  14. H.J. Kim, J.Y. Lee, K.W. Paik, K.W. Koh, J.H. Won, S.Y. Choe, J. Lee, J.T. Moon, and Y.J. Park, IEEE Trans. Compon. Packag. Technol. 26, 367 (2003).

    Article  CAS  Google Scholar 

  15. Y. Funamizu and K. Watanabe, Trans. Jpn. Inst. Met. 12, 147 (1971).

    CAS  Google Scholar 

  16. Y. Tamou, J. Li, S.W. Russell, and J.W. Mayer, Nucl. Instrum. Methods B 64, 130 (1992).

    Article  ADS  Google Scholar 

  17. K. Rajan and E.R. Wallach, J. Cryst. Growth 49, 297 (1980).

    Article  CAS  ADS  Google Scholar 

  18. J.P. Lokker, A.J. Böttger, W.G. Sloof, F.D. Tichelaar, G.C.A.M. Janssen, and S. Radelaar, Acta Mater. 49, 1339 (2001).

    Article  CAS  Google Scholar 

  19. M. Koberna and J. Fiala, Mater. Sci. Eng. A 159, 231 (1992).

    Article  Google Scholar 

  20. H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, and Z. Chen, Scripta Mater. 61, 165 (2009).

    Article  CAS  Google Scholar 

  21. J.R. Ho, C.C. Chen, and C.H. Wang, Sens. Actuators A 111, 188 (2004).

    Article  Google Scholar 

  22. Y.R. Jeng and J.H. Horng, J. Tribol. 123, 725 (2001).

    Article  Google Scholar 

  23. Y. Tanaka, M. Kajihara, and Y. Watanabe, Mater. Sci. Eng. A 445–446, 355 (2007).

    Google Scholar 

  24. M. Kajihara, Mater. Sci. Eng. A 403, 234 (2005).

    Article  Google Scholar 

  25. W.B. Lee, K.S. Bang, and S.B. Jung, J. Alloy Compd. 390, 212 (2005).

    Article  CAS  Google Scholar 

  26. M. Braunovic and N. Alexandrov, IEEE Trans. Compon. Packag. Manuf. Technol. 17, 78 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is an output of the PMI2 Project funded by the UK Department for Innovation, Universities, and Skills (DIUS) for the benefit of the Singapore Higher Education Sector and the UK Higher Education Sector. Authors would also like to acknowledge Dr. Geoff West, Mr. John Bates, and Mr. Honghui Wang for their assistance with experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Liu, C., Silberschmidt, V.V. et al. Growth of Intermetallic Compounds in Thermosonic Copper Wire Bonding on Aluminum Metallization. J. Electron. Mater. 39, 124–131 (2010). https://doi.org/10.1007/s11664-009-0951-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0951-8

Keywords

Navigation