Skip to main content
Log in

Formation of thermal decomposition cavities in physical vapor transport of silicon carbide

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The relationship between seed mounting and the formation of thermal decomposition cavities in physical vapor transport grown silicon carbide was investigated. Scanning electron microscopy, energy dispersive x-ray spectroscopy, Auger electron spectroscopy, and optical microscopy were used to characterize thermal decomposition cavities at various stages of their development. The observations indicate that the attachment layer that holds the seed to the graphite crucible lid frequently contains voids. The seed locally decomposes at void locations and Si-bearing species are transported through the void. The decomposition produces a cavity in the seed; the silicon is deposited on and diffuses into the graphite lid. The formation of thermal decomposition cavities can be suppressed by the application of a diffusion barrier on the seed crystal backside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu.M. Tairov and V.F. Tsvetkov, J. Cryst. Growth 43, 209 (1978).

    Article  CAS  Google Scholar 

  2. D.L. Barrett, R.G. Seidensticker, W. Gaida, R.H. Hopkins, and W.J. Choyke, J. Cryst. Growth 109, 17 (1991).

    Article  CAS  Google Scholar 

  3. D.L. Barrett, J.P. McHugh, H.M. Hobgood, R.H. Hopkins, P.G. McMullin, R.C. Clarke, and W.J. Choyke, J. Cryst. Growth 128, 358 (1993).

    Article  CAS  Google Scholar 

  4. H.M. Hobgood, D.L. Barrett, J.P. McHugh, R.C. Clarke, S. Sriram, A.A. Burk, J. Greggi, C.D. Brandt, R.H. Hopkins, and W.J. Choyke, J. Cryst. Growth 137, 181 (1994).

    Article  CAS  Google Scholar 

  5. R.A. Stein, Physica 185b, 211 (1993).

    Google Scholar 

  6. Yu.A. Vodakov, A.D. Roenkov, M.G. Ramm, E.N. Mokhov, and Yu.N. Makarov, Phys. Stat. Sol. (b) 202, 177 (1997).

    Article  CAS  Google Scholar 

  7. M. Anikin, M. Pons, K. Chourou, O. Chaix, J.M. Bluet, V. Lauer, and R. Madar, Mater. Sci. Forum 264–268, 45 (1998).

    Article  Google Scholar 

  8. I. Khlebnikov, T.S. Sudarshan, V. Madangarli, and M.A. Capano, Mater. Res. Soc. Symp. Proc. 483, 123 (1998).

    CAS  Google Scholar 

  9. V.D. Heydemann, N. Schulze, D.L. Barrett, and G. Pensl, Diamond and Related Materials 6, 1262 (1997).

    Article  CAS  Google Scholar 

  10. M. Dudley, S. Wang, W. Huang, C.H. Carter, Jr., V.F. Tsvetkov, and C. Fazi, J. Phys. D: Appl. Phys. 28, A63 (1995).

    Google Scholar 

  11. R.C. Glass, D. Henshall, V.F. Tsveltkov, and C.H. Carter, Jr., Phys. Stat. Sol. (b) 202, 149 (1997).

    Article  CAS  Google Scholar 

  12. V. Balakrishna, R.H. Hopkins, G. Augustine, G.T. Dunne, and R.N. Thomas, Inst. Phys. Conf. Ser. 160, 321 (1997).

    Google Scholar 

  13. M. Tuominen, R. Yakimova, A. Vehanen, and E. Janzen, Mater. Sci. Eng. B57, 229 (1999).

    Google Scholar 

  14. J.A. Lely, Ber. Dt. Ker. Ges. 32, 229 (1955).

    Google Scholar 

  15. J. Drowart, G. De Maria, and M.G. Inghram, J. Chem. Phys. 29, 1015 (1958).

    Article  CAS  Google Scholar 

  16. C. Thomas, C. Taylor, J. Griffen, M.G. Spencer, K. Kornegay, M. Capano, and S. Rendakova, Spring MRS 1999 proceedings, in print.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez, E.K., Kuhr, T., Heydemann, V.D. et al. Formation of thermal decomposition cavities in physical vapor transport of silicon carbide. J. Electron. Mater. 29, 347–352 (2000). https://doi.org/10.1007/s11664-000-0075-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0075-7

Key words

Navigation