Skip to main content
Log in

Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In an industrial Ruhrstahl–Heraeus (RH) degasser, gas bubbles can expand rapidly due to heating by the melt as well as to the significant pressure drop when they rise in the melt. A suitable model for the bubble expansion is, therefore, essential for the accurate numerical prediction of argon–melt hydrodynamics in an RH degasser. This study focuses on the evaluation and comparison of different bubble expansion models available in the literature based on a coupled computational fluid dynamics–population balance model. The simulation results show that compared with the measured results, the modified Szekely–Martins model demonstrates the suitability for treating the bubble expansion behavior and thereby simulating the argon–melt hydrodynamics in an industrial RH degasser. The flow field and bubble expansion, breakup, and coalescence phenomena are then investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A g :

Surface area of an Ar bubble (m2)

\( \overrightarrow {A} _{i} \) :

Area vectors of face i (m2)

\(B_{i}^{{{\text{Coa}}}}\),\(B_{i}^{{{\text{Bre}}}}\) :

Birth rates (1/(m3 s))

c kj :

Coalescence rate (m3/s)

C g :

Heat capacity (J/(kg K))

C D, C L, C VM :

Drag, lift, and virtual mass coefficients

C μ, C 1 ε, C 2 ε, C 3 ε :

Constants

d 32 :

Sauter mean diameter (m)

d i :

Diameter of bubble with size i (m)

\(D_{i}^{{\text{Coa}}}\),\(D_{i}^{{\text{Bre}}}\) :

Death rates (1/(m3 s) )

\(\vec{F}_{\text{D}}\),\(\vec{F}_{\text{L}}\),\(\vec{F}_{{\text{TD}}}\),\(\vec{F}_{{\text{VM}}}\) :

Drag, lift, turbulent dispersion, and virtual mass forces (N/m3)

\(\vec{g}\) :

Gravitational acceleration (m/s2)

G k,l :

Production of melt turbulent kinetic energy (m2/s3)

h g :

Heat transfer coefficient (J/(m2 s K))

k l :

Melt turbulent kinetic energy (m2/s2)

M g :

Argon molecular weight (kg/mol)

n i, n k, n j :

Bubble number concentration (1/m3)

p g :

Bubble pressure (N/m2)

P 0 :

Pressure at the nozzle exits (N/m2)

r g :

Bubble diameter (m)

R:

Gas constant (J/(mol·K))

Re:

Reynolds number

t :

Bubble rising time (s)

T :

Temperature (K)

\(\vec{u}_{\text{g}}\),\(\vec{u}_{\text{l}}\) :

Velocity of argon, and melt (m/s)

u slip :

Slip velocity (m/s)

V i :

Volume of a bubble with size i (m3)

α g, α l :

Volume fraction

ε l :

Melt turbulent kinetic energy dissipation rate (m2/s3)

λ g :

Heat conductivity coefficient (J/(m s K))

μ l, μ t :

Melt molecular viscosity and turbulent viscosity (kg/(m s))

ρ g, ρ l :

Density of argon and melt (kg/m3)

σ l :

Surface tension (N/m)

σ k, σ ε :

Constants

Ω i :

Breakup frequency (1/s)

χ jk :

Bubble redistribution coefficient

g :

Argon

l :

Melt

0:

At the injection location

References

  1. A.N. Conejo, R. Mishra, and D. Mazumdar: Metall. Mater. Trans. B., 2019, vol. 50(3), pp. 1490–1502.

    Article  CAS  Google Scholar 

  2. S.W.P. Cloete, J.J. Eksteen, and S.M. Bradshaw: Miner Eng., 2013, vol. 46–47, pp. 16–24.

    Article  Google Scholar 

  3. P.K. Singh and D. Mazumdar: Metall. Mater. Trans. B., 2019, vol. 50(2), pp. 1091–1103.

    Article  CAS  Google Scholar 

  4. B.C. Han, G.S. Wei, R. Zhu, W.H. Wu, J.J. Jiang, C. Feng, J.F. Dong, S.Y. Hu, and R.Z. Liu: J. CO2 Util., 2019, vol. 34, pp. 53–62.

    Article  CAS  Google Scholar 

  5. S. Chatterjee, D.H. Li, and K. Chattopadhyay: Metall Mater. Trans. B., 2018, vol. 49(2), pp. 756–766.

    Article  CAS  Google Scholar 

  6. J.R.S. de Rocha, E.E.B. de Souza, F. Marcondes, and J.A. de Castro: J. Mater. Res. Technol., 2019, vol. 8(5), pp. 4209–20.

    Article  Google Scholar 

  7. S.H. Majidi, J. Griffin, and C. Beckermann: Metall Mater. Trans. B., 2018, vol. 49(5), pp. 2599–610.

    Article  CAS  Google Scholar 

  8. C.A. Real-Ramirez, I. Carvajal-Mariscal, F. Sanchez-Silva, F. Cervantes-De-La-Torre, J. Diaz-Montes, and J. Gonzalez-Trejo: Metall Mater. Trans. B., 2018, vol. 49(4), pp. 1644–57.

    Article  CAS  Google Scholar 

  9. A.P.R. da Santos, T.C. da Mota, H.V.G. Segundo, L.H. de Almeida, L.S. Araújo, and A.C. da Rocha: J. Mater. Res. Technol., 2018, vol. 7(3), pp. 331–6.

    Article  CAS  Google Scholar 

  10. Y.G. Park, W.C. Doo, K.W. Yi, and S.B. An: ISIJ Int., 2000, vol. 40(8), pp. 749–55.

    Article  CAS  Google Scholar 

  11. Y.G. Park and K.W. Yi: ISIJ Int., 2003, vol. 43(9), pp. 1403–9.

    Article  CAS  Google Scholar 

  12. M.Y. Zhu, Y.L. Wu, C.W. Du, and Z.Z. Huang: J. Iron Steel Res. Int., 2005, vol. 12(2), pp. 20–4.

    CAS  Google Scholar 

  13. D.Q. Geng, H. Lei, and J.C. He: Metall Mater. Trans. B., 2010, vol. 41(1), pp. 234–47.

    Article  Google Scholar 

  14. D.Q. Geng, H. Lei, and J.C. He: Ironmak. Steelmak., 2012, vol. 39(6), pp. 431–38.

    Article  CAS  Google Scholar 

  15. H.T. Ling, F. Li, L.F. Zhang, and A. Conejo: Metall Mater. Trans. B., 2016, vol. 47(3), pp. 1950–61.

    Article  CAS  Google Scholar 

  16. H.T. Ling, L.F. Zhang, and C. Liu: Ironmak. Steelmak., 2018, vol. 45(2), pp. 145–56.

    Article  CAS  Google Scholar 

  17. H.T. Ling and L.F. Zhang: Metall Mater. Trans. B., 2018, vol. 49(5), pp. 2709–21.

    Article  CAS  Google Scholar 

  18. G.J. Chen, S.P. He, and Y.G. Li: Metall Mater. Trans. B., 2017, vol. 48(4), pp. 2176–86.

    Article  CAS  Google Scholar 

  19. Y. Luo, C. Liu, Y. Ren, and L.F. Zhang: Steel Res. Int., 2018, vol. 89(12), p. 1800048.

    Article  Google Scholar 

  20. P.A. Kishan and S.K. Dash: Int. J. Numer. Methods Heat Fluid Flow., 2006, vol. 16(8), pp. 890–909.

    Article  CAS  Google Scholar 

  21. D.Q. Geng, J. Zheng, K. Wang, P. Wang, R. Liang, H. Liu, H. Lei, and J.C. He: Metall. Mater. Trans. B., 2015, vol. 46(3), pp. 1484–93.

    Article  CAS  Google Scholar 

  22. J.H. Wei and H.T. Hu: Ironmak. Steelmak., 2005, vol. 32(5), pp. 427–34.

    Article  CAS  Google Scholar 

  23. J.H. Wei and H.T. Hu: Steel Res Int., 2006, vol. 77(1), pp. 32–6.

    Article  CAS  Google Scholar 

  24. J.M. Zhang, L. Liu, X.Y. Zhao, S.W. Lei, and Q.P. Dong: ISIJ Int., 2014, vol. 54(7), pp. 1560–9.

    Article  CAS  Google Scholar 

  25. B.H. Zhu, Q.C. Liu, M. Kong, J. Yang, D. Li, and K. Chattopadhyay: Metall Mater. Trans. B., 2017, vol. 48(5), pp. 2620–30.

    Article  CAS  Google Scholar 

  26. J. Peixoto, W. Gabriel, T. de Oliveira, C. da Silv, I. da Silva, and V. Seshadri: Metall Mater. Trans. B., 2018, vol. 49(5), pp. 2421–34.

    Article  CAS  Google Scholar 

  27. S. Chen, H. Lei, M. Wang, B. Yang, L. Dai, and Y. Zhao: Vacuum., 2019, vol. 167, pp. 255–62.

    Article  CAS  Google Scholar 

  28. G.J. Chen, S.P. He, Y.G. Li, Y.T. Guo, and Q. Wang: JOM., 2016, vol. 68(8), pp. 2138–48.

    CAS  Google Scholar 

  29. P.A. Kishan and S.K. Dash: ISIJ Int., 2009, vol. 49(4), pp. 495–504.

    Article  CAS  Google Scholar 

  30. L. Li, Z. Liu, B. Li, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2015, vol. 55(7), pp. 1337–46.

    Article  CAS  Google Scholar 

  31. G.J. Chen and S.P. He: J. Mater. Sci. Technol., 2020, vol. 9(3), pp. 3318–29.

    CAS  Google Scholar 

  32. Z.Q. Liu, F.S. Qi, B.K. Li, and S.C.P. Cheung: Int. J. Multiphas. Flow., 2016, vol. 79, pp. 190–201.

    Article  CAS  Google Scholar 

  33. J. Szekely and G.P. Martins: Trans. Met. Soc. AIME., 1969, vol. 245, pp. 629–36.

    CAS  Google Scholar 

  34. V.G. Levich: Physicochemical Hydrodynamics, Prentice-Hall Inc., Englewood Cliffs, 1962, p. 452.

    Google Scholar 

  35. P.V. Danckwerts: Gas-Liquid Reactions, McGraw-Hill Book Company, Great Britain, 1970.

    Book  Google Scholar 

  36. S.V. Komarov and M. Sano: ISIJ Int., 1998, vol. 38(10), pp. 1045–52.

    Article  CAS  Google Scholar 

  37. M. Sano, K. Mori, and Y. Fujita: Tetsu-to-Hagané., 1979, vol. 65(8), pp. 1140–8.

    Article  CAS  Google Scholar 

  38. K. Mori, M. Sano, and T. Sato: Trans ISIJ., 1979, vol. 19(9), pp. 553–8.

    Article  CAS  Google Scholar 

  39. M. Takahashi, H. Matsumoto, and T. Saito: ISIJ Int., 1995, vol. 35(12), pp. 1452–8.

    Article  CAS  Google Scholar 

  40. L. Schiller and Z. Naumann: Z. Ver. Deutsch. Ing., 1935, vol. 77, pp. 318–20.

    Google Scholar 

  41. R. Mei and J.F. Klausner: Int. J. Heat Fluid Fluid Flow., 1994, vol. 15(1), pp. 62–5.

    Article  CAS  Google Scholar 

  42. O. Simonin and P.L. Viollet: Phenomena in multiphase flows, Hemisphere Publ. Corp, Washington, DC, 1990, pp. 259–69.

    Google Scholar 

  43. S. Elghobashi and T. Abou-Arab: The Physics of Fluids., 1983, vol. 26(4), pp. 931–8.

    Article  Google Scholar 

  44. M.J. Hounslow, R.L. Ryall, and V.R. Marshall: AIChE J., 1988, vol. 34(11), pp. 1821–32.

    Article  CAS  Google Scholar 

  45. H. Luo: Ph.D. Dissertation, The Norwegian Institute of Technology, Trondheim, 1993.

  46. H. Luo and H. Svendsen: AIChE J., 1996, vol. 42(5), pp. 1225–33.

    Article  CAS  Google Scholar 

  47. Y.G. Park, K.W. Yi, and S.B. Ahn: ISIJ Int., 2001, vol. 41(5), pp. 403–9.

    Article  CAS  Google Scholar 

  48. B. Zhu, Q. Liu, D. Zhao, S. Ren, M. Xu, B. Yang, and B. Hu: Steel Res Int., 2016, vol. 87(2), pp. 136–45.

    Article  CAS  Google Scholar 

  49. H.T. Ling and L.F. Zhang: Metall Mater. Trans. B., 2019, vol. 50(4), pp. 2017–28.

    Article  CAS  Google Scholar 

  50. C.G. Méndez, N. Nigro, and A. Cardona: J. Mater. Process. Tech., 2005, vol. 160, pp. 296–305.

    Article  Google Scholar 

  51. H.J. Duan, Y. Ren, and L.F. Zhang: JOM., 2018, vol. 70(10), pp. 2128–38.

    Article  CAS  Google Scholar 

  52. W. Chen and L.F. Zhang: Metall Mater. Trans. B., 2021, vol. 52(1), pp. 528–47.

    Article  CAS  Google Scholar 

  53. S.P. Pudasaini: Int. J. Multiphas. Flow., 2019, vol. 113, pp. 142–52.

    Article  CAS  Google Scholar 

  54. P. Shiva: Pudasaini J. Geophys. Res-earth., 2012, vol. 117(F03010), pp. 1–28.

    Google Scholar 

  55. L. Neves, C.A.R. Carneiro, R.F. Reis, and R.P. Tavares: Comput. Methods Mater. Sci., 2010, vol. 10(4), pp. 207–13.

    Google Scholar 

Download references

Acknowledgments

The authors wish to express thanks to the financial supports of the National Natural Science Foundation of China (Grant No. 52104321), the Natural Science Foundation of Chongqing, China (Grant No. cstc2020jcyj-msxmX0177), and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant Nos. KJQN201801413 and KJQN202101404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengping He.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 9 2021; accepted October 10 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., He, S. Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models. Metall Mater Trans B 53, 208–219 (2022). https://doi.org/10.1007/s11663-021-02357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02357-6

Navigation