Skip to main content
Log in

Evaluation of Slag Entrapment in Continuous Casting Mold Based on the LES-VOF-DPM Coupled Model

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A transient three-dimensional mathematical model is developed to study the slag entrapment in a continuous-casting mold. The unsteady turbulent flow is computed using the large eddy simulation (LES). The sub-grid scale structure is modeled by Smagorinsky–Lilly model. The movements of discrete bubbles, as well as three continuous phases (air-slag-steel) are described by solving the coupled discrete particle model (DPM) and volume of fraction (VOF) model. Comparisons are made between the plant measurements and predicted result of level fluctuations near the submerged entry nozzle (SEN), and good agreements are obtained. Results reveal that the average velocity, transverse velocity of slag-metal interface are not accurate to evaluate the seriousness of slag entrapment in mold, because the surface velocity is also affected by bubble movements. By comparison, the variation trend of maximum velocity of slag-metal interface shows good agreements with that of the slag drops and therefore can be used to evaluate the slag entrapment in mold. Then considering interfacial tension force, mold size, impinging angle, port angle, impinging velocity and depth, a new dimensionless value of “J” is established to evaluate the seriousness of slag entrapment. Through comparing with traditional “F value”, the J value shows remarkable advantages in predicting slag entrapment in mold with different widths and volume flow rates of argon. The results are beneficial for controlling slag entrapment during continuous casting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. L.C. Hibbeler and B.G. Thomas: Iron Steel Technol., 2013, vol. 10, pp. 121–36. .

    Google Scholar 

  2. X.L. Li, B.K. Li, Z.Q. Liu, R. Niu, Y.Q. Liu, C.L. Zhao, C.D. Huang, H.S. Qiao, and T.X. Yuan: Metals., 2019, vol. 9(1), pp. 1–10. .

    Google Scholar 

  3. S. Yamashita and M. Iguchi: ISIJ Int., 2001, vol. 41(12), pp. 1529–31. .

    Article  CAS  Google Scholar 

  4. J. Savolainen, T. Fabritius, and O. Mattila: ISIJ Int., 2009, vol. 49(1), pp. 29–36. .

    Article  CAS  Google Scholar 

  5. M. Iguchi, J. Yoshida, T. Shimizu, and Y. Mizuno: ISIJ Int., 2000, vol. 40(7), pp. 685–91. .

    Article  CAS  Google Scholar 

  6. D. Gupta and A.K. Lahiri: Ironmak. Steelmak., 1996, vol. 23(4), pp. 361–3. .

    CAS  Google Scholar 

  7. J. Mietz, S. Schneider, and F. Oeters: Steel Res. Int., 1991, vol. 62(1), pp. 10–5. .

    Article  CAS  Google Scholar 

  8. H. Lei, M.Y. Zhu, and J.C. He: Acta Metall. Sin., 2000, vol. 36(10), pp. 1113–7. .

    CAS  Google Scholar 

  9. A. Sharan and A.W. Cramb: Metall. Mater. Trans. B., 1995, vol. 26(1), pp. 87–94. .

    Article  Google Scholar 

  10. Y. Chung and A.W. Cramb: Metall. Mater. Trans. B., 2000, vol. 31(5), pp. 958–71. .

    Article  Google Scholar 

  11. J.M. Harman and A.W. Cramb: 79rd Steelmaking Conference Proceedings. Iron and Steel Society, Pittsburgh, 1996, pp. 773–84.

  12. M. Saeedipour, S. Puttinger, N. Doppelhammer, and S. Pirker: Chem. Eng. Sci., 2019, vol. 198, pp. 98–107. .

    Article  CAS  Google Scholar 

  13. Z.Q. Liu, Z.B. Sun, and B.K. Li: Metall. Mater. Trans. B., 2017, vol. 48(2), pp. 1248–67. .

    Article  CAS  Google Scholar 

  14. S.M. Cho, B.G. Thomas, and S.H. Kim: Metall. Mater. Trans. B., 2019, vol. 50(1), pp. 52–76. .

    Article  CAS  Google Scholar 

  15. X.L. Li, B.K. Li, Z.Q. Liu, R. Niu, and X.C. Huang: Steel Res. Int., 2019, vol. 90(4), pp. 1800133.

    Article  Google Scholar 

  16. Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2014, vol. 54(6), pp. 1314–23. .

    Article  CAS  Google Scholar 

  17. Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2013, vol. 53(3), pp. 484–92. .

    Article  CAS  Google Scholar 

  18. B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B., 2014, vol. 45(1), pp. 22–35. .

    Article  CAS  Google Scholar 

  19. X.L. Li, B.K. Li, Z.Q. Liu, R. Niu, and Q. Liu: ISIJ Int., 2018, vol. 58(11), pp. 2052–61. .

    Article  CAS  Google Scholar 

  20. Z.Q. Liu, L.M. Li, and B.K. Li: JOM., 2016, vol. 68(8), pp. 2180–90. .

    Article  CAS  Google Scholar 

  21. M. Bielnicki and J. Jowsa: Steel Res. Int., 2018, vol. 89(9), p. 1800110. .

    Article  Google Scholar 

  22. X.L. Li, B.K. Li, Z.Q. Liu, R. Niu, Q. Liu, X.C. Huang, G.D. Xu, and X.M. Ruan: Steel Res. Int., 2019, vol. 90(3), p. 1800423. .

    Article  Google Scholar 

  23. S. Kunstreich and P.H. Dauby: Ironmak. Steelmak., 2005, vol. 32(1), pp. 80–6. .

    Article  CAS  Google Scholar 

  24. Y. Wang, S.F. Yang, F. Wang, and J.S. Li: Materials., 2019, vol. 12(11), pp. 1–20. .

    Google Scholar 

  25. T. Zhang, J. Yang, and P. Jiang: Metals., 2019, vol. 9(1), pp. 1–9. .

    Article  Google Scholar 

  26. A. Theodorakakos and G. Bergeles: Metall. Mater. Trans. B., 1998, vol. 29(6), pp. 1321–7. .

    Article  Google Scholar 

  27. G.A. Panaras, A. Theodorakakos, and G. Bergeles: Metall. Mater. Trans. B., 1998, vol. 29(5), pp. 1117–26. .

    Article  Google Scholar 

  28. H. Mizukami, M. Hanao, S. Hiraki, M. Kawamoto, T. Watanabe, A. Hayashi, and M. Iguchi: Tetsu-to-Hagané., 2000, vol. 86(4), pp. 265–70. .

    Article  CAS  Google Scholar 

  29. J. Yoshida, M. Iguchi, and S. Yokoya: Tetsu-to-Hagané., 2001, vol. 87(8), pp. 9–15. .

    Article  Google Scholar 

  30. T. Teshima, M. Osame, K. Okimoto, and Y. Nimura: Steelmaking Conference Proceedings, Transactions of the Iron and Steel Institute of Japan, Tokyo, 1988, pp. 111–18.

  31. L.F. Zhang, J. Aoki, and B.G. Thomas: Metall. Mater. Trans. B., 2006, vol. 37(3), pp. 361–79. .

    Article  CAS  Google Scholar 

  32. D. Gupta and A. Lahiri: Metall. Mater. Trans. B., 1994, vol. 25(2), pp. 227–33. .

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51974071 and 51874203), Young Elite Scientists Sponsorship Program by CAST (No. 2018QNRC001), and Fundamental Research Funds for the Central Universities (No. N182505039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baokuan Li or Tianpeng Qu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 13, 2020; accepted June 5, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, B., Liu, Z. et al. Evaluation of Slag Entrapment in Continuous Casting Mold Based on the LES-VOF-DPM Coupled Model. Metall Mater Trans B 52, 3246–3264 (2021). https://doi.org/10.1007/s11663-021-02253-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02253-z

Navigation