Skip to main content

Advertisement

Log in

The Structure Evolution Mechanism of Ni Films Depending on Hydrogen Evolution Property During Electrodeposition Process

  • Topical Collection: 2019 Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Hydrogen evolution property is an important factor to regulate the surface structure of the electrodeposited Ni film. In this work, the dependence of current density on hydrogen evolution property is researched. The structure evolution mechanism of the Ni film depending on current density is analyzed in terms of the hydrogen evolution characteristic. It is found that the surface structure of the Ni film from compact to porous structure could be achieved by adjusting the electrodeposition current density. At low current density (less than 0.07 A cm−2), the current efficient of hydrogen evolution is very weak. Ni electrodeposition is the main reaction, so compact Ni film is formed. At high current density (higher than 0.3 A cm−2), hydrogen evolution reaction is enhanced with the increase of current density. At this time, there are plenty of bubbles which can act as templates. As a result, porous Ni film is electrodeposited. However, when the current density is lower than 0.7 A cm−2, dish-like pore with large diameter is formed due to the large break-off diameter and the long resident time of the hydrogen bubble. And honeycomb-like pore with small diameter is formed at current density larger than 1 A cm−2, because of reduced break-off diameter and resident time of the hydrogen bubble. Porous film with uniform structure is electrodeposited at 1 A cm−2, which possesses the higher catalytic activity for hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Fang, G. Dong, R. Wei, and J. Ho: Adv. Energy Mater., 2017, vol. 7, art. no. 1700559.

  2. M. Wang, X. Yu, Z. Wang, X. Gong, and Z. Guo: J. Mater. Chem. A, 2017, vol. 5, pp. 9488-9513.

    Article  Google Scholar 

  3. X. Xing, S. Cherevko, and C.H. Chung: Mater. Chem. Phys., 2011, vol. 126, pp. 36-40.

    Article  Google Scholar 

  4. B.J. Plowman, L.A. Jones, and S.K. Bhargava: Chem. Commun. 2015, vol. 51 pp. 4331-4346.

    Article  Google Scholar 

  5. S. Cherevko, and C.H. Chung: Electrochem. Commun., 2011, vol. 13, pp. 16-19.

    Article  Google Scholar 

  6. S. Cherevko, X. Xing, and C.H. Chung: Appl. Surf. Sci., 2011, vol. 257, pp. 8054-8061.

    Article  Google Scholar 

  7. S. Cherevko, and C.H. Chung: Electrochim. Acta, 2010, vol. 55, pp. 6383-6390.

    Article  Google Scholar 

  8. S. Cherevko, N. Kulyk, and C.H. Chung: Langmuir, 2012, vol. 28, pp. 3306–3315.

    Article  Google Scholar 

  9. E.P. Barbano, I.A. Carlos, and E. Vallés: Surf. Coat.Technol., 2017, vol. 324, pp. 80-84.

    Article  Google Scholar 

  10. X. Yu, M. Wang, Z. Wang, X. Gong, and Z. Guo: J. Phys. Chem. C, 2017, vol. 121, pp. 16792-16802.

    Article  Google Scholar 

  11. X. Yu, M. Wang, Z. Wang, X. Gong, and Z. Guo: Appl. Surf. Sci., 2016, vol. 360, pp. 502-509.

    Article  Google Scholar 

  12. W. Tsai, P. Hsu, Y. Hwu, C. Chen, L. Chang, J. Je, H. Lin, A. Groso, and G. Margaritondo: Nature, 2002, vol. 417, pp. 139-139.

    Article  Google Scholar 

  13. N.D. Nikolic, K.I. Popov, L.J. Pavlovic, and M.G. Pavlovic: Surf. Coat.Technol., 2006, vol. 201, pp. 560-566.

    Article  Google Scholar 

  14. H. Zhang, Y. Ye, R. Shen, C. Ru, and Y. Hu: J. Electrochem. Soc., 2013, vol. 160, pp. D441-D445.

    Article  Google Scholar 

  15. H.C. Shin, and M.L. Liu: Chem. Mater., 2004, vol. 16, pp. 5460-5464.

    Article  Google Scholar 

  16. R. Kim, D. Han, D. Nam, J. Kim, and H. Kwon: Jpn. J. Microbiol., 2010, vol. 1, pp. 1-9.

    Google Scholar 

  17. L. Rafailović, C. Gammer, C. Rentenberger, C. Kleber, A. Whitehead, B. Gollas, and H. Karnthaler: Phys. Chem. Chem. Phys. 2012, vol. 14, pp. 972-980.

    Article  Google Scholar 

  18. C. Srivastava, S.K. Ghosha, S. Rajak, A.K. Sahu, R. Tewari, V. Kaina, and G.K. Dey: Surf. Coat.Technol., 2017, vol. 313, pp. 8-16.

    Article  Google Scholar 

  19. I. Matsui, N. Omura, T. Yamamoto, and Y. Takigawa: Surf. Coat.Technol., 2018, vol. 337, pp. 411-417.

    Article  Google Scholar 

  20. M. Wang, Z. Wang, X. Yu, X. Gong, and Z. Guo: Int. J. Hydrogen Energy, 2015, vol. 40, pp. 2173-2181.

    Article  Google Scholar 

  21. C. Cheng, T. Yeh, M. Tsai, H. Chou, H.Wu, and C. Hsieh: Surf. Coat.Technol., 2017, vol. 324, pp. 80-84.

    Article  Google Scholar 

  22. Z. Q. Cui, Principles of Metallography and heat treatment, Harbin Institute of Technology Press, Harbin, 2008.

    Google Scholar 

  23. I. Najdovski, and A. O’Mullane: Electroanal. Chem., 2014, vol. 722-723, pp. 95-101.

    Article  Google Scholar 

  24. X. Chen, L. Kong, D. Dong, G. Yang, L. Yu, J. Chenand, and P. Zhang: J. Phys. Chem. C, 2009, vol. 113, pp. 5396-5401.

    Article  Google Scholar 

  25. H.Y. Jiang, Metallurgical Electrochemistry, Metallurgical Industry Press, Beijing, 1983.

    Google Scholar 

  26. X. Yu, M. Wang, Z. Wang, X. Gong, and Z. Guo: Electrochim. Acta, 2016, vol. 211, pp. 900-910.

    Article  Google Scholar 

  27. C. Gonzalez-Buch, I. Herraiz-Cardona, E. Ortega, J. Garcia-Anton, and V. Perez-Herranz: Int. J. Hydrogen Energy, 2013, vol. 38, pp. 10157-10169.

    Article  Google Scholar 

  28. B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani: Electrochim. Acta, 2010, vol. 55, pp. 6218-6227.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (51804023) and Fundamental Research Funds for the Central Universities (FRF-TP-18-007A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangfu Yuan.

Additional information

Manuscript submitted November 2, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Yuan, Z. The Structure Evolution Mechanism of Ni Films Depending on Hydrogen Evolution Property During Electrodeposition Process. Metall Mater Trans B 50, 587–594 (2019). https://doi.org/10.1007/s11663-019-01512-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01512-4

Navigation