Skip to main content
Log in

Characterization and Recovery of Copper from Converter Copper Slag Via Smelting Separation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Converter copper slag can be viewed as an important secondary resource for valuable metals, considering its high commercial value. The current research investigates the recycling of copper by a combination of theoretical and experimental methods. Based on a modified Stokes equation, it was determined that copper droplets in the molten slag exhibited a low terminal settling velocity of 2.140 × 10−6 m/s. The copper particles will collide with each other during settling, resulting in particle growth. The results from high temperature experimentation, scanning electron microscopy, and energy-dispersive spectroscopy confirm that in the absence of reducing agents, copper droplets are encased in magnetite to form composite ‘Cu droplet–magnetite’ particles. Other copper droplets adhere to magnetite particles which are suspended in the slag in a short-range-ordered array. The study also confirms that in the presence of increasing amounts of anthracite as a reducing agent, the magnetite content of the slag is progressively decreased and the recovery of copper from the slag is significantly improved. Based on the findings from this work, a new processing route is proposed to treat copper slag for the recovery of copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. 1. R. Sharma and R.A. Khan: J. Clean. Prod., 2017, vol. 151, pp. 179-192.

    Article  CAS  Google Scholar 

  2. R.U. Pagador, N. Wachgama, C. Khuankla, and J.P.T. Kapusta: TMS Annual Meeting, 2009, pp. 367–81.

  3. 3. J.G. Whellock and J.W. Matousek: JOM, 1990, vol. 42, pp. 23-25.

    Article  CAS  Google Scholar 

  4. 4. P. E. Queneau and R. Schuhmann: JOM, 1974, vol. 26, pp. 14-16.

    Article  CAS  Google Scholar 

  5. 5. R.R. Moskalyk and A.M. Alfantazi: Miner. Eng., 2003, vol. 16, pp. 893-919.

    Article  CAS  Google Scholar 

  6. 6. J.H. Heo, Y. Chung, and J.H. Park: J. Clean. Prod., 2016, vol. 137, pp. 777-787.

    Article  CAS  Google Scholar 

  7. 7. İ. Alp, H. Deveci, and H. Süngün: J. Hazard. Mater., 2008, vol. 159, pp. 390-395.

    Article  CAS  Google Scholar 

  8. B. Gorai, R.K. Jana, and Premchand: 2003. Resour. Conserv. Recycl., 2003, vol. 39, pp. 299-313

    Article  Google Scholar 

  9. 9. C. Shi, C. Meyer, and A. Behnood: Resour. Conserv. Recycl., 2008, vol. 52, pp. 1115-1120.

    Article  Google Scholar 

  10. 10. K. Kambham, S. Sangameswaran, S.R. Datar, and B. Kura: J. Clean. Prod., 2007, vol. 15, pp. 465-473.

    Article  Google Scholar 

  11. 11. L. Miganei, E. Gock, M. Achimovičová, L. Koch, H. Zobel, and J. Kähler: J. Clean. Prod., 2017, vol. 164, pp. 534-542.

    Article  CAS  Google Scholar 

  12. 12. I.K. Suh, Y. Waseda, and A. Yazawa: High Temp. Mater. Processes., 1988, vol. 8, pp. 65-88.

    Article  CAS  Google Scholar 

  13. 13. N. Cardona, P. Coursol, P.J. Mackey, and R. Parra: Can. Metall. Q., 2011, vol. 50, pp. 318-329.

    Article  CAS  Google Scholar 

  14. I. Imris, M. Sanchez, and G. Achurra: in Proc. 7th Int. Conf. on Molten Slags, Fluxes and Salts., Johannesburg, South Africa, 2004, pp. 177–82.

  15. 15. R. Sridhar, J.M. Toguri, and S. Simeonov: Metal. Mater. Trans. B., 1997, vol. 28, pp. 191-200.

    Article  CAS  Google Scholar 

  16. 16. S.W. Ip, and J.M. Toguri: Metall. Trans. B., 1992, vol. 23, pp. 303-311.

    Article  CAS  Google Scholar 

  17. 17. H.C. Maru, D.T. Wasan, and R.C. Kintner: Chem. Eng. Sci., 1971, vol. 26, pp. 1615-1628.

    Article  CAS  Google Scholar 

  18. 18. R. Minto and W.G. Davenport: Canadian Mining and Metallurgical Bulletin., 1972, vol. 65, pp. C36-42.

    Google Scholar 

  19. 19. K. Starodub, Y. Kuminova, A. Dinsdale, V. Cheverikin, V. Filichkina, A. Saynazarov, A. Khvan, and A. Kondratiev: Metal. Mater. Trans. B., 2016, vol. 47, pp. 2904-2918.

    Article  Google Scholar 

  20. 20. H. M. Henao, C. Nexhip, D.P. George-Kennedy, P.C. Hayes, and E. Jak: Metal. Mater. Trans. B., 2010, vol. 41, pp. 767-779.

    Article  CAS  Google Scholar 

  21. 21. P. Tan: JOM., 2011, vol. 63, pp. 51-57.

    Article  CAS  Google Scholar 

  22. 22. P. Coursol, N.C. Valencia, P. Mackey, S. Bell, and B. Davis: JOM., 2012, vol. 64, pp. 1305-1313.

    Article  CAS  Google Scholar 

  23. 23. B. Zhao, P. Hayes, and E. Jak: J. Min. Metal. B., 2013, vol. 49, pp. 153-159.

    Article  CAS  Google Scholar 

  24. 24. A. Rusen, A. Geveci, Y.A. Topkaya, and B. Derin: JOM., 2016, vol. 68, pp. 2323-2331.

    Article  CAS  Google Scholar 

  25. 25. H. Zhang, X. Shi, B. Zhang, and X. Hong: Metall. Mater. Trans. B., 2014, Vol. 45B, pp. 582-589.

    Google Scholar 

  26. 26.Z. Zuo, Q. Yu, M. Wei, H. Xie, W. Duan, K. Wang, and Q. Qin: J. Therm. Anal. Calorim., 2016, Vol. 126, pp. 481-491.

    Article  CAS  Google Scholar 

  27. 27. W. J. Bruckard, M. Somerville, and F. Hao: Miner. Eng., 2004, vol. 17, pp. 495-504.

    Article  CAS  Google Scholar 

  28. 28. E. Rudnik, L. Burzyńska, and W. Gumowska: Miner. Eng., 2009, vol. 22, pp. 88-95.

    Article  CAS  Google Scholar 

  29. 29. H.S. Altundogan, M. Boyrazli, and F. Tumen: Miner. Eng., 2004, vol. 17, pp. 465-467.

    Article  CAS  Google Scholar 

  30. 30. A. Sarrafi, B. Rahmati, H.R. Hassani, and H.H.A. Shirazi: Miner. Eng., 2004, vol. 17, pp. 457-459.

    Article  CAS  Google Scholar 

  31. 31. P. Coursol, N.C. Valencia, P. Mackey, S. Bell, and B. Davis: JOM, 2012, vol. 64, pp. 1305-1313.

    Article  CAS  Google Scholar 

  32. 32. I. Imris, M. Sánchez, and G. Achurra: Miner. Process. Extr. Metall., 2013, vol. 114, pp. 135-140.

    Article  Google Scholar 

  33. 33. W. Wołczyński and A.W. Bydałek: Archives of Foundry Engineering, 2016, vol. 16, pp. 95-98.

    Article  Google Scholar 

  34. 34.W. Wołczyński, A. Sypien, A. Tarasek, and A.W. Bydałek: Arch. Metall. Mater., 2017, vol. 62, pp. 289-296.

    Article  Google Scholar 

  35. 35. E. D. Wilde, I. Bellemans, L. Zheng, M. Campforts, M. Guo, B. Blanpain, N. Moelans, and K. Verbeken: Mater. Sci. Technol., 2016, vol. 32, pp. 1911-1924.

    Article  Google Scholar 

  36. 36.N. Korakas: Trans. Inst. Min. Metall. C, 1962, vol. 72, pp. 35-53.

    Google Scholar 

  37. 37.M.H. Chen, D.Z. Cong, T.N. Fang, M.Z. Qi, and H.L. Pan: Principles of Chemical Engineering, 4th Ed, Chemical Industry Press, Beijing, 2015.

    Google Scholar 

  38. 38. P.K. Iwamasa, and R.J. Fruehan: ISIJ Int., 1996, vol. 36, pp. 1319-1327.

    Article  CAS  Google Scholar 

  39. 39.J. Happel, and H. Brenner: Low Reynolds Number Hydrodynamics, 2nd ed. Noordhoff International Publishing, Leyden, 1973.

    Google Scholar 

  40. 40. R. Clift, J.R. Grace, and M.E. Weber: Bubbles, Drops, and Particles. Academic Press, New York, 1978.

    Google Scholar 

  41. 41. M. Nagamori: Metall. Trans., 1974, vol. 5, pp. 531-538.

    Article  Google Scholar 

  42. 42. N. Cardona, P. Coursol, J. Vargas, and R. Parra: Can. Metall. Q. 2011b, Vol. 50, pp. 330-340.

    Article  CAS  Google Scholar 

  43. 43. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: John Wiley & Sons., 1961, vol. 28, pp. 338-359.

    Google Scholar 

  44. 44. S. Francisco, J.W. Taunton, and E.N. Lightfoot: AlChE J., 2010, vol. 16, pp. 386-391.

    Google Scholar 

  45. 45.N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures. Pergamon, Oxford (1999).

    Google Scholar 

  46. 46. R. Sangiorgi, M.L. Muolo, D. Chatain, and N. Eustathopoulos: J. Am. Ceram. Soc., 1988, vol. 71, pp. 742-748.

    Article  CAS  Google Scholar 

  47. 47. Y.V. Naidich: in Progress in Surface and Membrane Science, vol. 14, ed. by D. A. Cadenhead and J. F. Danielli, Academic Press, New York,1981, p. 353.

    Google Scholar 

  48. 48. I. Rivollet, D. Chatain, and N. Eustathopoulos: J. Mater. Sci., 1990, vol. 25, pp. 3179-3185.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this study was supplied from the National Natural Science Foundation of China (U1602272 and 51664039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Additional information

Manuscript submitted October 9, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Wei, Y., Shi, Y. et al. Characterization and Recovery of Copper from Converter Copper Slag Via Smelting Separation. Metall Mater Trans B 49, 2458–2468 (2018). https://doi.org/10.1007/s11663-018-1364-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1364-y

Keywords

Navigation