Skip to main content
Log in

Accounting for Melt Flow Pattern and Solid Fraction Evolution in DC Casting of Al-Cu Alloy Using \( v^{2}{-}f \) Turbulence Model

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Experimental techniques remain reliable approaches for investigating the effects of parameters of the direct chill (DC) casting process on macrosegregation, grain structure formation, and surface quality. However, experimental analysis methods of these effects are expensive and can often prove difficult to implement. Understanding of the complex physics of the solidification process remains limited, and this makes it indispensable to use accurate numerical modeling tools as a complement to experiments. Numerical modeling without consideration of turbulent flow is unsuitable for application to solidification occurring during DC casting, since significant turbulent flow exists in the upper section of the cast, where the liquid pool exists. The present work employed a low-Re \( v^{2}{-}f\) turbulence model and a dual-zone solidification flow model to predict the melt flow pattern, turbulence level, sump depth, transition zone thickness, and mushy zone thickness in the DC casting of Al-Cu alloy. The obtained results provided evidence of significant damping of the flow in the slurry zone. Furthermore, results of different simulation cases revealed a narrower transition zone and shallower sump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.G. Eskin: Physical metallurgy of direct chill casting of aluminum alloys, CRC Press, Boca Raton, 2008, pp. 1-18.

    Book  Google Scholar 

  2. J.F. Grandfield and P.T. Mcglade: Mater. Forum, 1996, vol. 20, pp. 29-51

    Google Scholar 

  3. C. Devadas and J.F. Grandfield., Experiences with Modeling Dc Casting of Aluminum, in Proceedings of the 120th TMS Annual Meeting Light Metals, TMS Annual Meeting: TMS (The Minerals, Metals and Materials Society), 1990, pp. 883-92.

  4. [4] S. C. Flood, L. Katgerman, V.R. Voller, in: M. Rappaz, M.R. Ozgu, K.W. Martin (Eds.): The Minerals, Metals and Materials Society, Warrendale, USA, 1991, pp. 683-690.

    Google Scholar 

  5. [5] C.J. Vreeman, M. J. M. Krane, F.P. Incropera: Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 677-686.

    Article  Google Scholar 

  6. C.J. Vreeman, F.P. Incropera: Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 687-704.

    Article  Google Scholar 

  7. [7] R.S. Rerko, H.C.D. Groh, C, Beckermann: Mater. Sci. and Eng. A, 2003, vol. 347, pp. 186-197.

    Article  Google Scholar 

  8. [8] M. Zaloznik, B. Sarler, D. Gobin: Mater. Technol., 2004, vol. 38, pp. 249-255.

    Google Scholar 

  9. [9] D.G. Eskin, J. Zuidema, V. I. Savran, L. Katgerman: Mater. Sci. Eng. A, 2004, vol. 384, pp. 232-244.

    Article  Google Scholar 

  10. [10] Q. Du, D.G. Eskin, L. Katgerman: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 144-150.

    Article  Google Scholar 

  11. A. Jafari, S.H. Seyedein, M.R. Aboutalebi, D.G. Eskin, L. Katgerman: Iran. J. Mater. Sci. Eng., 2010, vol. 7, pp. 39-50.

    Google Scholar 

  12. [12] S. Verma, A. Dewan, Metall. Mater. Trans. B, 2014, vol.45, pp. 1456-1471.

    Article  Google Scholar 

  13. [13] S. Asian and J. Szekely, Ironmak. Steelmak, 1975, vol. 3, pp. 205-13

    Google Scholar 

  14. P.J. Flint: Steelmak. Conf. Proc., 1990, pp. 481-90

  15. [15] X. Huang, B.G. Thomas, F. M. Najjar: Metall. Mater. Trans. B 1992, Vol. 23 pp. 339-356.

    Article  Google Scholar 

  16. [16] B.Q. Li: J. Mater. Process. Technol., 1995, vol. 55, pp. 351-359.

    Article  Google Scholar 

  17. [17] W. Shyy, Y. Pang, G.B. Hunter, D.Y. Wei, M. H. Chen: Int. J. Heat Mass Transf., 1992, vol. 35, pp. 1229-1245.

    Article  Google Scholar 

  18. [18] S. Chakraborty, N. Chakraborty, P. Kumar, P. Dutta: Int. J. Heat Mass Transf, 2003, vol. 46, pp. 1115-1137.

    Article  Google Scholar 

  19. [19] C.M. Oldenburg, F.J. Spera: Numer. Heat Transfer, Part B, 1992, vol. 21, pp. 217-229.

    Article  Google Scholar 

  20. L. Zhang, D.G. Eskin, A. Miroux, T. Subroto, L. Katgerman: IOP Conf. Series Mater. Sci. Eng., 2012, vol. 33, pp. 1-7.

    Google Scholar 

  21. [21] D. Mortensen: Metall. Mater. Trans. B, 1999, vol. 30B pp. 119.

    Article  Google Scholar 

  22. [22] L. Begum, M. Hasan: Numer. Heat Transfer, Part A, 2015, vol. 67, pp.719-745.

    Article  Google Scholar 

  23. [23] B.E. Launder, B.I. Sharma: Lett. Heat. Mass Transfer, 1974, vol. 1, pp. 131-137.

    Article  Google Scholar 

  24. [24] P.A. Durbin: J.Theor. Comput. Fluid Dyn., 1991, vol. 3, pp. 1-13.

    Google Scholar 

  25. [25] F.S. Lien, G. Kalitzin: Int. J. Heat Fluid Flow, 2001, vol. 22, pp. 53-61.

    Article  Google Scholar 

  26. [26] A. Sveningsson, L. Davidson: Int. J. Heat Fluid Flow, 2004, vol. 25, pp. 785-794.

    Article  Google Scholar 

  27. [27] D.R. Laurence, J.C. Uribe, S.V. Utyuzhnikov: Flow Turbulence Combust, 2004, vol. 73, pp. 169-185.

    Article  Google Scholar 

  28. F.S. Lien and P.A. Durbin: Non-linear k-v2 modeling with application to high lift, Proceedings of 1996 Summer Programme, 1996, pp. 5-22.

  29. [29] B.R. Kazerooni, and S.K. Hannani: Trans. B: Mechanical Engineering, 2009, vol. 16, pp. 159-167.

    Google Scholar 

  30. [30] S. Chang, D.M. Stefanescu: Metall. Trans. A, 1996, vol. 27A, pp. 2708-2721

    Article  Google Scholar 

  31. [31] G. Poole, N. El-Kaddah: ISIJ Inter., 2014, vol. 54, pp. 321-327.

    Article  Google Scholar 

  32. [32] W.D. Bennon, F.P.Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161-2170

    Article  Google Scholar 

  33. [33] V.R. Voller, C. Prakash: Int. J. Heat Mass Transfer 1987, vol. 30, pp.1709-1719.

    Article  Google Scholar 

  34. [34] D.R. Poirier: Metall. Trans. B, 1987, vol. 18, pp. 245-255.

    Article  Google Scholar 

  35. J. Sengupta, S.L. Cockcroft, D.M. Maijer, M.A. Wellsand, A. Larouche: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 523-540.

    Article  Google Scholar 

  36. [36] Suyitno, W.H. Kool, L. Katgerman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2917-2926.

    Article  Google Scholar 

  37. E.D. Suyitno, D.G. Eskin, V.I. Savran, L. Katgerman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3551-3561

    Article  Google Scholar 

  38. ANSYS FLUENT 16.0, ANSYS, Inc., Canonsburg, PA, 2011.

  39. [39] I.B. Celik, U. Ghia, P.J. Roache, C.J. Freitas, H. Coleman, P.E. Raad: J. Fluids Eng., 2008, vol.130, pp. 1-4

    Google Scholar 

  40. [40] D.G. Eskin, V.I. Savran, L. Katgerman: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1965-1976.

    Article  Google Scholar 

  41. [41] B.C.H. Venneker, L. Katgerman: J. Light Metals, 2002, vol. 2, pp. 149-159.

    Article  Google Scholar 

  42. [42] D.G. Eskin, Q. Du, L. Katgerman: Metall. Mater. Trans. A, 2008, vol. 39A, pp.1206-1212.

    Article  Google Scholar 

  43. Dewan, A: Tackling Turbulent Flows in Engineering, Springer, New York, 2010, pp. 59-79.

    Google Scholar 

Download references

Acknowledgment

This work was conducted under the sponsorship of the Tertiary Education Trust Fund (TETFUND) (www.tetfund.gov.ng).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Nzebuka.

Additional information

Manuscript submitted September 19, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nzebuka, G.C., Waheed, M.A., Kuye, S.I. et al. Accounting for Melt Flow Pattern and Solid Fraction Evolution in DC Casting of Al-Cu Alloy Using \( v^{2}{-}f \) Turbulence Model. Metall Mater Trans B 50, 866–880 (2019). https://doi.org/10.1007/s11663-018-01502-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-01502-y

Navigation