Skip to main content
Log in

Liquid Metal Infiltration Processing of Metallic Composites: A Critical Review

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Metal matrix composites (MMC) are one of the advanced materials widely used for aerospace, automotive, defense, and general engineering applications. MMC can be tailored to have superior properties such as enhanced high-temperature performance, high specific strength and stiffness, increased wear resistance, better thermal and mechanical fatigue, and creep resistance than those of unreinforced alloys. To fabricate such composites with ideal properties, the processing technique has to ensure high volume fraction of reinforcement incorporation, uniform distribution of the reinforcement, and acceptable adhesion between the matrix and the reinforcing phase without unwanted interfacial reactions which degrades the mechanical properties. A number of processing techniques such as stir casting/vortex method, powder metallurgy, infiltration, casting etc. have been developed to synthesize MMC employing a variety of alloy and the reinforcement’s combinations. Among these, infiltration process is widely used for making MMC with high volume fraction of reinforcements and offers many more advantages compared to other conventional manufacturing processes. The present paper critically reviews the various infiltration techniques used for making the MMC, their process parameters, characteristics, and selected studies carried out worldwide and by authors on the development of metal ceramic composites by squeeze infiltration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. D. T. Kountouras, C. A. Vogiatzis, F. Stergioudi, A. Tsouknidas and S. M. Skolianos: J. Mater. Eng. Perform, 2014, vol. 23, pp. 2015-19.

    Article  Google Scholar 

  2. K. Naplocha, A. Janus, J.W. Kaczmar and Z. Samsonowicz: J. Mater. Process. Tech, 2000, vol. 106, pp. 119-22.

    Article  Google Scholar 

  3. M. Scheffler and P. Colombo: Cellular Ceramics: Structure, Manufacturing, Properties and Applications, Wiley-VCH, Weinheim, Germany, 2005, p.645.

    Book  Google Scholar 

  4. Paolo Colombo: Phil. Trans. R. Soc. A, 2006, vol. 364, pp. 109-24.

    Article  Google Scholar 

  5. P. Colombo and J. R. Hellmann: Mater. Res. Innov, 2002, vol. 6, pp.260-72.

    Article  Google Scholar 

  6. P. Sepulveda: Am. Ceram. Soc. Bull, 1997, vol. 76, pp. 61-65.

    Google Scholar 

  7. L. Montanaro, Y. Jorand, G. Fantozzi and A. Negro: J. Eur. Ceram. Soc, 1998, vol. 18, pp. 1339-50.

    Article  Google Scholar 

  8. J. Luyten, I. Thijs, W. Vandermeulen, S. Mullens, B. Wallaeys and R. Mortelmans: Adv. Appl. Ceram, 2005, vol. 104, pp. 4-8.

    Article  Google Scholar 

  9. Y.W. Kim, S.H. Kim, C. Wang, C.B. Park: J. Am. Ceram. Soc, 2003, vol. 86, pp. 2231-33.

    Article  Google Scholar 

  10. T. J. Fitzgerald, V. J. Michaud, and A. Mortensen: J. Mater. Sci, 1995, vol. 30, pp. 1037-45.

    Article  Google Scholar 

  11. Andre R. Studart, Urs T. Gonzenbach, Elena Tervoort and Ludwig J. Gauckler: J. Am. Ceram. Soc, 2006, vol. 89, pp. 1771-89.

    Article  Google Scholar 

  12. Nassim Samer, Jérôme Andrieux, Bruno Gardiola, Nikhil Karnatak, Olivier Martin, Hiroki Kurita, Laurent Chaffron, Sophie Gourdet, Sabine Lay and Olivier Dezellus: Compos. Part. A. Appl. S, 2015, vol. 72, pp. 50-57.

    Article  Google Scholar 

  13. M. Rosso: Ceramic and metal matrix composites: route and properties, 12th international scientific conference on Achievements in Mechanics and Materials Engineering, 2003.

  14. Biao Chen, Shufeng Li, Hisashi Imai, Lei Jia, Junko Umeda, Makoto Takahashi and Katsuyoshi Kondoh: Comp. Sci. and Tech, 2015, vol. 113, pp. 1-8.

    Article  Google Scholar 

  15. Hajo Dieringa: J. Mater. Sci, 2011, vol. 46, pp. 289–306

    Article  Google Scholar 

  16. T. Yamanaka, Y.B. Choi, K. Matsugi, O. Yanagisawa and G. Sasaki: J. Mater. Process. Tech, 2007, vol. 187-188, pp. 530-32.

    Article  Google Scholar 

  17. A. Rodriguez-Guerrero, S.A. Sanchez, J. Narciso, E. Louis and F. Rodriguez-Reinoso: Acta. Mater, 2006, vol. 54, pp. 1821-31.

    Article  Google Scholar 

  18. L.A. Dobrzański, M. Kremzer, A. Nagel and B. Huchler: JAMME, 2006, vol. 18, pp. 71-74.

    Google Scholar 

  19. E.C. Hammel, O.L.-R. Ighodaro and O.I. Okoli: Ceram. Int, 2014, vol. 40, pp. 15351-370.

    Article  Google Scholar 

  20. P. Putyra, P. Kurtyka, L. Jaworska, M. Podsiadlo and B. Smuk: AMSE, 2008, vol. 33, pp. 97-100.

    Google Scholar 

  21. O. Raddatz, G.A. Schneider and N. Claussen: Acta.Mater, 1998, vol. 46, pp. 6381-95.

    Article  Google Scholar 

  22. A. Mortensen: Comprehensive Composite materials, 2000, vol. 3.20, pp. 521-554.

  23. A.M. Zahedi, H.R. Rezaie, J. Javadpour, Mehdi Mazaheri and M.G. Haghighi: Ceram. Int, 2009, vol. 35, pp. 1919-26.

    Article  Google Scholar 

  24. B. Srinivasa Rao and V. Jayaram: Acta. Mater, 2001, vol. 49, pp. 2373-85.

    Article  Google Scholar 

  25. M.I. Pech-Canul, R.N. Katz and M.M. Makhlouf: J. Mater. Process. Tech, 2000, vol. 108, pp. 68-77.

    Article  Google Scholar 

  26. Kon Bae Lee and Hoon Kwon: Scripta. Mater, 1997, vol. 36, pp. 847-52.

    Article  Google Scholar 

  27. M. Rodríguez-Reyes, M.I. Pech-Canul, J.C. Rendón-Angeles and J. López-Cuevas: Comp. Sci. and Tech, 2006, vol. 66, pp. 1056-62.

    Article  Google Scholar 

  28. K.B. Lee, J.H. Choi and H. Kwon: Met. Mater. Int, 2009, vol. 15, pp. 33-36.

    Article  Google Scholar 

  29. M. Guedes, J.M.F. Ferreira, L.A. Rocha and A.C. Ferro: Ceram. Int, 2011, vol. 37, pp. 3631-35.

    Article  Google Scholar 

  30. F. Ortega-Celaya, M.I. Pech-Canul and M.A. Pech-Canul: J. Mater. Process. Technol, 2007, vol. 183, pp. 368-73.

    Article  Google Scholar 

  31. A.M. Bahraini, T. Minghetti, M. Zoellig, J. Schubert, K. Berroth, C. Schelle, T. Graule and J. Kuebler: Compos. Part A. Appl. S, 2009, vol. 40, pp. 1566-72.

    Article  Google Scholar 

  32. K. Lemster, T. Graule and J. Kuebler: Mat. Sci. Eng. A. Struct. 2005, vol. 393, pp. 229-38.

    Article  Google Scholar 

  33. D. Wittig, A. Glauche, C.G. Aneziris, T. Minghetti, C. Schelle, T. Graule and J. Kuebler: Mat. Sci. Eng. A. Struct, 2008, vol. 488, pp. 580-85.

    Article  Google Scholar 

  34. A. Contreras, V.H. Lopez and E. Bedolla: Scripta. Mater, 2004, vol. 51, pp. 249-53.

    Article  Google Scholar 

  35. B.C. Pai, G. Ramani, R.M. Pillai and K.G. Satyanarayna: J. Mater. Sci, 1995, vol. 30, pp. 1903-11.

    Article  Google Scholar 

  36. G.H. Schiroky, D.V. Miller, M.K. Aghajanian and A.S. Fareed: Key. Eng. Mater, 1997, vol. 127-131, pp. 141-52.

    Article  Google Scholar 

  37. H. Nakae and Y. Hiramoto: Int. J. Metalcast, 2011, vol. 5, pp. 23-28.

    Article  Google Scholar 

  38. T.P.D. Rajan, R.M. Pillai and B.C. Pai: J. Mater. Sci, 1998, vol. 33, pp. 3491-503.

    Article  Google Scholar 

  39. Xiao Mei Xi, Xiao Feng Yang: J. Am. Ceram. Soc, 1996, vol. 79, pp. 102-08.

    Article  Google Scholar 

  40. R.Y. Lin, R. J. Arsenault, G. P. Martins and S. G. Fishman: Interfaces in Metal–Ceramic Composites, Minerals, Metals and Materials Society, Warrendale, PA 1990, pp.291.

    Google Scholar 

  41. G. Mingyuan, J. Yanping, M. Zhi, W. Zengan and W. Renjie, Mater. Sci. Eng. A. Struct, 1998, vol. 252, pp. 188-98.

    Article  Google Scholar 

  42. Idem. Jpn. Kokai. Tokkyo. Koho. JP 01279721 A2, 10 Nov, 1989, Heisei, pp.13.

  43. R.K. Dwivedi, V. Irick Jr, US patent 4871008, 1989

  44. P.K. Rohatgi, J.K. Kim, N. Gupta, Simon Alaraj and A. Daoud: Compos. Part A, 2006, vol. 37, pp. 430-37.

    Article  Google Scholar 

  45. E. Carreno-Morelli, T. Cutard, R. Schaller and C. Bonjour: Mater. Sci. Eng. A, 1998, vol. 251, pp. 48-57.

    Article  Google Scholar 

  46. L.H. Qi, L.Z. Su, J.M. Zhou, J.T. Guan, X.H. Hou and H.J. Li: J. Alloy. Compd, 2012, vol. 527, pp. 10-15.

    Article  Google Scholar 

  47. Adem Demir and Necat Altinkok: Comp. Sci. and Tech, 2004, vol. 64, pp. 2067-74.

    Article  Google Scholar 

  48. T. Joseph Blucher: J. Mater. Process. Technol., 1992, vol. 30, pp. 381-90.

    Article  Google Scholar 

  49. Zhenjun Wang, Zhifeng Xu, Huan Yu, Qingsong Yan and Bo Wen Xiong: Adv. Mat. Res, 2013, vol. 634-638, pp. 1914-17.

    Article  Google Scholar 

  50. W. Hufenbach, M. Gude, A. Czulak, J. Sleziona, A. Dolata-Grosz, M. Dyzia: JAMME, 2009, vol. 35, pp. 177-83.

    Google Scholar 

  51. A. Daoud: Mater. Sci. Eng. A, 2005, vol. 391, pp. 114-20.

    Article  Google Scholar 

  52. N. W. Rasmussen, P. N. Hansen and S. F. Hansen: Mater. Sci. Eng. A, 1991, vol. 135, pp. 41-43.

    Article  Google Scholar 

  53. J. Wannasin and M.C. Flemings: J. Mater. Process. Tech, 2005, vol. 169, pp. 143-49.

    Article  Google Scholar 

  54. M. Sanchez, J. Rams and A. Urena, Compos. Part A. Appl. S, 2010, vol. 41, pp. 1605-611.

    Article  Google Scholar 

  55. Y. Nishida, I. Shirayanagi and Y. Sakai: Metall. Mater. Trans A, 1996, vol. 27, pp. 4163-69.

    Article  Google Scholar 

  56. R. M. Andrews and A. Mortensen: Mater. Sci. Eng. A. Struct, 1991, vol. 144, pp. 165-68.

    Article  Google Scholar 

  57. J. Pan, D.M. Yang, H. Wan and X.F. Yin: Key. Eng. Mater, 1995, vol. 104-107, pp. 275-82.

    Article  Google Scholar 

  58. Yang Deming, Yin Xinfang and Pan Jin: J. Mater. Sci. Lett, 1993, vol. 12, pp. 252-53.

    Article  Google Scholar 

  59. Tadashi Matsunaga, Kenji Matsuda, Tomei Hatayama, Kenji Shinozaki and Makoto Yoshida: Compos. Part A. Appl. S, 2007, vol. 38, pp. 1902-11.

    Article  Google Scholar 

  60. Tadashi Matsunaga, Kenji Ogata, Tomei Hatayama, Kenji Shinozaki and Makoto Yoshida: Compos. Part A. Appl. S, 2007, vol. 38, pp. 771-78.

    Article  Google Scholar 

  61. Gen Sasaki, Junichi Adachi, Yong-Bum Choi, Jin Pan, Toshio Fujii, Kazuhiro Matsugi and Osamu Yanagisawa: Mater. Sci. Forum, 2005, vol. 475 – 479, pp. 921-24.

    Article  Google Scholar 

  62. Ferhat Gul and Mehmet Acilar: Comp. Sci. and Tech, 2004, vol. 64, pp. 1959-70.

    Article  Google Scholar 

  63. Wen-Sheng Chung and SuJien Lin: Mater. Res. Bull, 1996, vol. 31, pp. 1437-47.

    Article  Google Scholar 

  64. Jingyu Yang and D. D. L. Chung: J. Mater. Sci, 1989, vol. 24, pp. 3605-12.

    Article  Google Scholar 

  65. Bowen Xiong, Huan Yu, Zhifeng Xu, Qingsong Yan and Changchun Cai: J. Alloys and Comp, 2011, vol. 509, pp. L279-83.

    Article  Google Scholar 

  66. Olivier Beffort, Siyuan Long, Cyril Cayron, Jakob Kuebler and Philippe-Andre Buffat: Comp. Sci. and Tech, 2007, vol. 67, pp. 737-45.

    Article  Google Scholar 

  67. K. Pradeep Rohatgi, Vindhya Tiwari and Nikhil Gupta: J. Mater. Sci, 2006, vol. 41, pp. 7232-39.

    Article  Google Scholar 

  68. Wang Deqing, Shi Ziyan, Gao Hong and H. F. Lopez: J. Mater. Synth. Proces, 2001, vol. 9, pp. 247-51.

    Article  Google Scholar 

  69. D. Coupard, J. Goni and J. F. Sylvain: J. Mater. Sci, 1999, vol. 34, pp. 5307-13.

    Article  Google Scholar 

  70. R. Saha, E. Morris and N. Chawla: J. Mater. Sci. Lett, 2002, vol. 21, pp. 337-39.

    Article  Google Scholar 

  71. L.M. Peng and K.S. Han: J. Mater. Sci. Lett, 2003, vol. 22, pp. 279-82.

    Article  Google Scholar 

  72. C.P. Ju, K. I. Chen and J. H. Chern Lin: J. Mater. Sci, 1994, vol. 29, pp. 5127-34.

    Article  Google Scholar 

  73. Jun-tao GUAN, Le-hua QI, Jian LIU, Ji-ming ZHOU and Xin-liang WEI: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 3173-79.

    Article  Google Scholar 

  74. J. Bear: Dynamics of fluids in porous media, Dover Publications, New York, NY, 1988.

    Google Scholar 

  75. C. Garcia-cordovillaa, E. Louisb and J. Narciso: Acta. Mater, 1999, vol. 47, pp. 4461-79.

    Article  Google Scholar 

  76. V.Michaud and A.Mortensen: Compos. Part A. Appl. S, 2001, vol. 32, pp. 981-96.

    Article  Google Scholar 

  77. M. Bahraini, J.M. Molina, M. Kida, L. Weber, J. Narciso and A. Mortensen: Curr. Opin. Solid. St. M, 2005, vol. 9, pp. 196-201.

    Article  Google Scholar 

  78. V. Sampath, N. Ramanan and R. Palaninathan: Mater. Manuf. Process, 2006, vol. 21, pp. 495-05.

    Article  Google Scholar 

  79. Adam Papworth and Peter Fox: Mater. Lett, 1996, vol. 29, pp. 209-13.

    Article  Google Scholar 

  80. T.R. Vijayaram, S. Sulaiman, A.M.S. Hamouda and M.H.M. Ahmad: J. Mater. Process. Tech, 2006, vol. 178, pp. 34-38.

    Article  Google Scholar 

  81. Hasan Ali Alhashmy and Michel Nganbe: Mater. Design, 2015, vol. 67, pp. 154-58.

    Article  Google Scholar 

  82. KM Sree Manu, VG Resmi, M Brahmakumar, N Anand, TPD Rajan, C Pavithran, BC Pai and K Manisekar: Mater. Sci. Forum, 2012, vol. 710, pp. 371-76.

    Article  Google Scholar 

  83. S.S.Wang: J. Compos. Mater, 1983, vol. 17, pp. 210-23.

    Article  Google Scholar 

  84. B. Kieback, A. Neubrand and H. Riedel: Mat. Sci. Eng. A-Struct, 2003, vol. 362, pp. 81-106.

    Article  Google Scholar 

  85. KM Sree Manu, VG Resmi, M Brahmakumar, P Narayanasamy, TPD. Rajan, C Pavithran and BC Pai: Trans. Indian. Inst. Metals, 2012, vol. 65, pp. 747-51.

    Article  Google Scholar 

  86. TY Kosolapova: Carbides Properties, Production and Applications (New York: Plenum), 1971.

    Google Scholar 

  87. F. Delannay, L. Froyen and A. Deruyttere: J. Mater. Sci, 1987, vol. 22, pp. 1-16.

    Article  Google Scholar 

  88. H. Ribes, M. Suery, G. Esperance and J.G. Legoux: Metall. Trans. A, 1990, vol. 21, pp. 2489-96.

    Article  Google Scholar 

  89. M.Y. Gu, Z. Mei, Y.P. Jin and Z.G. Wu: Scripta. Mater, 1999, vol. 40, pp. 985-91.

    Article  Google Scholar 

  90. Chun-xue Ma, Jia-Kang Yu, Chen Xue And Zhi-Qing Zhang: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 2229-35.

    Google Scholar 

  91. Shaofeng Zhang, Guoqin Chen, Risheng Pei, Murid Hussain, Yaping Wang, Daguang Li, Pingping Wang and Gaohui Wu: Mater. Design, 2015, vol. 65, pp. 567-74.

    Article  Google Scholar 

  92. Diego Manfredi, Matteo Pavese, Sara Biamino, Andrea Antonini, Paolo Fino and Claudio Badini: Compos. Part A. Appl. S, 2010, vol. 41, pp. 639-45.

    Article  Google Scholar 

  93. N. Nagendra, B.S. Rao and V. Jayaram: Mater. Sci. Eng. A. Struct, 1999, vol. 269, pp. 26-37.

    Article  Google Scholar 

  94. Lin Zhang, Xuanhui Qu, BohuaDuan, Xinbo He, Shubin Ren and Mingli Qin: Comp. Sci. and Tech, 2008, vol. 68, pp. 2731-38.

    Google Scholar 

  95. S.G. Warrier, C.A. Blue and R.Y. Lin: J. Mater. Sci. Lett, 1993, vol.12, pp. 865-868

    Article  Google Scholar 

  96. E. Hajjari, M. Divandari and A.R. Mirhabibi: Mater. Des, 2010, vol. 31, pp. 2381-86.

    Article  Google Scholar 

  97. Yu-qin MA, Le-hua QI, Wu-qiang Zheng, Ji-ming Zhou and Lu-yan Ju: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 1915-21.

    Article  Google Scholar 

  98. Qiurong Yang, Jinxu Liu, Shukui Li, Fuchi Wang and Tengteng Wu: Mater. Des, 2014, vol. 57, pp. 442-48.

    Article  Google Scholar 

  99. M. Lancin and C. Marhic: J. Eur. Ceram. Soc, 2000, vol. 20, pp. 1493-503.

    Article  Google Scholar 

  100. M. H. Vidal- Sétif, M. Lancin, C. Marhic, R. Valle, J.-L. Raviart, J.-C. Daux and M. Rabinovitch: Mater. Sci. Eng. A. Struct, 1999, vol. 272, pp. 321-33.

    Article  Google Scholar 

  101. Lehua Qi, Luyan Ju and Jiming Zhou: Procedia Eng, 2014, vol. 81, pp. 1577-82.

    Article  Google Scholar 

  102. L.A. Dobrzanski, M. Kremzer and A. Nagel: JAMME, 2007, vol. 24, pp. 183-186.

    Google Scholar 

  103. T. Etter, M. Papakyriacou, P. Schulz and P.J. Uggowitzer: Carbon, 2003, vol. 41, pp. 1017-24.

    Article  Google Scholar 

  104. Shubin Ren, Xinbo He, Xuanhui Qu, Islam S. Humail and Yan Li: Comp. Sci. and Tech, 2007, vol. 67, pp. 2103-13.

    Article  Google Scholar 

  105. H.S. Lee and S.H. Hong: Mater. Sci. Tech, 2003, vol. 19, pp. 1057-64.

    Article  Google Scholar 

  106. M.I. Pech-Canul, R.N. Katz and M.M. Makhlouf: J. Mater. Process. Tech, 2000, vol. 108, pp. 68-77.

    Article  Google Scholar 

  107. M. Lee, Y. Choi, K. Sugio, K. Matsugi and G. Sasaki: Compos. Sci. Technol., 2014, vol. 97, pp. 1–5.

    Article  Google Scholar 

  108. Ayse Kalemtas, Gulsum Topates, Ozlem Bahadir, Pinar Kaya Isci and Hasan Mandal: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 1304-13.

    Article  Google Scholar 

  109. X.Y. Qin, B.M. Wu, Y.L. Du, L.D. Zhang and H.X. Tang: Nanostruct. Mater, 1996, vol. 7, pp. 383-91.

    Article  Google Scholar 

  110. S. M. Seyed Reihani: Mater. Des, 2006, vol. 27, pp. 216-22.

    Article  Google Scholar 

  111. G.M. Song, Y.J. Wang and Y. Zhou: J. Mater. Sci, 2001, vol. 36, pp. 4625-31.

    Article  Google Scholar 

  112. Yan-Wei Zhao, Yu-Jin Wang, Lei Chen, Yu Zhou, Gui-Ming Song and Jun-Ping Li: Int. J. Refract. Met. H, 2013, vol. 37, pp. 40-44.

    Article  Google Scholar 

  113. Yonggang Tong, Shuxin Bai, Qing H Qin, Hong Zhang and Yicong Ye: Ceram. Int, 2015, vol. 41, pp. 4014-20.

    Article  Google Scholar 

  114. Yulin Zhu, Song Wang, Hongmei Chen, Wei Li, Jinming Jiang and Zhaohui Chen: Ceram. Int, 2013, vol. 39, pp. 9085-89.

    Article  Google Scholar 

  115. Shubin Ren, Xinbo He, Xuanhui Qu, Islam S. Humail and Yan Li: Comp. Sci. and Tech, 2007, vol. 67, pp. 2103-13.

    Article  Google Scholar 

  116. X-F Tan, F-H Zeng, S-Q Wang, F Zhou and X Xiong: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 2359-65

    Article  Google Scholar 

  117. Yulin Zhu, Song Wang, Hongmei Chen, Wei Li and Zhaohui Chen: Ceram. Int, 2014, vol. 40, pp. 2793-98.

    Article  Google Scholar 

  118. S. Can Kurnaz: Mater. Sci. Eng. A, 2003, vol. 346, pp. 108-15.

    Article  Google Scholar 

  119. E. Schlenther, C.G. Aneziris, T. Graule and J. Kuebler: Mater. Sci. Eng. A. Struct, 2012, vol. 556, pp. 751-57.

    Article  Google Scholar 

  120. C.A. Lewis and P.J.Withers: Acta. Metall. Mater, 1995, vol. 43, pp. 3685-99.

    Article  Google Scholar 

  121. J.F. Zhang, L.C. Zhang and Y.W. Mai: J Mater Sci, 1995, vol. 30, pp. 1961-66.

    Article  Google Scholar 

  122. L Zhang, X-H Qu, B-H Duan, X-B He, Ming-Li Qin: Trans. Nonferrous Metal Soc. China, 2008, vol. 18, pp. 1076-82.

    Article  Google Scholar 

  123. A. Daoud: Mater. Lett, 2004, vol. 58, pp. 3206-13.

    Article  Google Scholar 

  124. Sheng-ming Zhou, Xiao-bin Zhang, Zhi-peng Ding, Chun-yan Min, Guo-liang Xu and Wen-ming Zhu: Compos. Part A. Appl. S, 2007, vol. 38, pp. 301-306.

    Article  Google Scholar 

  125. Hong Chang, Jon Binner and Rebecca Higginson: Wear, 2010, vol. 268, pp. 166-71.

    Article  Google Scholar 

  126. L.A. Dobrzanski, M. Kremzer and M. Drak: JAMME, 2008, vol. 30, pp. 121-28.

    Google Scholar 

  127. R. Escalera-Lozano, C.A. Gutiérrez, M.A. Pech-Canul and M.I. Pech-Canul: Mater. Charact, 2007, vol. 58, pp. 953-60.

    Article  Google Scholar 

  128. Sennur Candan: Corros. Sci, 2009, vol. 51, pp. 1392-98.

    Article  Google Scholar 

  129. Sennur Candan: Mater. Lett, 2004, vol. 58, pp. 3601-05.

    Article  Google Scholar 

  130. Z. Ahmad, P.T. Paulette and B.J.A. Aleem: J. Mater. Sci., 2000, vol. 35, pp. 2573-79.

    Article  Google Scholar 

  131. K. Surappa: Aluminium matrix composites: Challenges and opportunities, Sadhana, Vol. 28:319.

    Article  Google Scholar 

  132. Cetin Toy and William D. Scott: J. Am. Ceram. Soc, 1990, vol. 73, pp. 97-101.

    Article  Google Scholar 

  133. H. S. Lee and S. H. Hong: Mater. Sci. and Tech, 2003, vol. 19, pp. 1057-64.

    Article  Google Scholar 

  134. R. Mahadevan and R. Gopal: 68th WFC - World Foundry Congress, 2008, 379.

  135. J. Goni, I. Sarries. J. Barcena, M. Garcia de Cortazar, P.Egizabal and J. Coleto: Developments in novel production processes for metal matrix composites, Proc. 16th International Conference on Composite materials, Kyoto, Japan, 8 - 13 July 2007.

  136. F.C. Campbell: Lightweight Materials: Understanding the Basics, ASM International, Materials Park, Ohio 2012, pp. 459.

    Google Scholar 

  137. M. Ebisawa, T. Hara, T. Hayashi and H. Ushio: Production Process for Metal Matrix Composite (MMC) Engine Block, SAE Special Paper Series, 910835.

  138. G. Itskos, P. K. Rohtagi, A. Moutsatsou, C. Vasilatos, J. D. Defow and N. Koukouzas: Pressure infiltration technique for the synthesis of A356 Al/fly ash composites: microstructure and tribological performance, World of Coal Ash Conference (WOCA), Denver, CO, 2011

  139. W. Wilk and B. Staniewicz-Brudnik: Abrasive Machining of Metal Matrix Composites, 8th International conference Advanced Manufacturing Operations, 2008, pp.373.

  140. B.S. Lee and S. Kang: Mater. Chem. Phys, 2001, vol. 67, pp. 249-55.

    Article  Google Scholar 

  141. Alexander Evans, Christopher San Marchi and Andreas Mortensen: Metal Matrix Composites in Industry: An Introduction and a Survey, Springer, New York, 2003.

    Book  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the CSIR for funding and the Director and Members of Materials Science and Technology Division, CSIR-NIIST, Trivandrum for their support and encouragement. We are grateful to Mr. Akhil M.G. for helping in drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. D. Rajan.

Additional information

Manuscript submitted February 26, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sree Manu, K.M., Ajay Raag, L., Rajan, T.P.D. et al. Liquid Metal Infiltration Processing of Metallic Composites: A Critical Review. Metall Mater Trans B 47, 2799–2819 (2016). https://doi.org/10.1007/s11663-016-0751-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0751-5

Keywords

Navigation