Skip to main content
Log in

Microstructure and Mechanical Properties of AA1235 Aluminum Foil Stocks Produced Directly from Electrolytic Aluminum Melt

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A new process is developed to obtain high-quality AA1235 aluminum foil stocks and to replace the traditional manufacture process. During the new manufacture process, AA1235 aluminum sheets are twin-roll casted directly through electrolytic aluminum melt (EAM), and subsequently the sheets are processed into aluminum foil stocks by cold rolling and annealing. Microstructure and mechanical properties of the AA1235 aluminum sheets produced through such new process are investigated in each state by optimal microscope, scanning electron microscopy, X-ray diffraction, orientation imaging microscopy, transmission electron microscopy, etc. The results show that compared with the traditional AA1235 aluminum foil stocks produced through re-melted aluminum melt (RAM), the amount of impurities is decreased in the EAM aluminum foil stocks. The EAM aluminum foil stock obtains less β-FeSiAl5 phases, but more α-Fe2SiAl8 phases. The elongation of EAM aluminum foil stocks is improved significantly owing to more cubic orientation. Especially, the elongation value of the EAM aluminum foil stocks is approximately 25 pct higher than that of the RAM aluminum foil stocks. As a result, the EAM aluminum foil stocks are at an advantage in increasing the processing performance for the aluminum foils during subsequent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Zhang, F. Pan, R. Zuo, and C. Bai: J. Mater. Process. Tech., 2008, vol. 206, pp. 382-87.

    Article  Google Scholar 

  2. W. Yan, G. Fu, H. Chen, and G. Chen: J. Mater. Eng. Perform., 2012, vol. 21, pp. 2203-06.

    Article  Google Scholar 

  3. K. Matsui: Kobe Res. Dev., 1990, vol. 40, pp. 89-92.

    Google Scholar 

  4. J. Zhang and F. Pan: First Joint Chinese-Danish Symposium, 2002, p. 75.

  5. S. Gourdet and F. Montheillet: Mater. Sci. Eng. A, 2000, vol. 283, pp. 274-88.

    Article  Google Scholar 

  6. R.K. Roy, S. Kar, K. Das, and S. Das: Mater. Lett., 2005, vol. 59, pp. 2418-22.

    Article  Google Scholar 

  7. Y.Z. Zhu, R.Y. Huang, Z. Zhu, and Z.D. Xiang: Mater. Sci. Tech. Lond., 2011, vol. 27, pp. 761-66.

    Article  Google Scholar 

  8. M. Zhou, D. Shu, K. Li, W.Y. Zhang, B.D. Sun, J. Wang, and H.J. Ni: Mater. Sci. Eng. A, 2003, vol. 347, pp. 280-90.

    Article  Google Scholar 

  9. T. Motoi and K. Fukuoka: J. Jpn. Inst. L. Met., 2002, vol. 52, pp. 226-30.

    Article  Google Scholar 

  10. A.L. Dons: Scan. J. Metall., 1984, vol. 13, pp. 137-43.

    Google Scholar 

  11. O. Keles and M. Dundar: J. Mater. Pro. Tech., 2007, vol.186, pp. 125-137.

    Article  Google Scholar 

  12. X.B. Liang and J.L. Li: Accomplishment Manual of Metal Material, Tension Test Method at Room-temperature, GB/T228-2002, Chinese Standard Press, 2002, pp. 297–332.

  13. A. Griger and V. Stefaniay: J. Mater. Sci., 1996, vol. 31, pp. 6645-52.

    Article  Google Scholar 

  14. N.A. Belov, A.A. Aksenov, and D.G. Eskin: Iron in Aluminum Alloys: Impurity and Alloying Element, CRC Press, 2002, pp. 3–7.

  15. Y.U.C. Birol: J. Mater. Pro. Tech., 2008, vol. 202, pp. 564-68.

    Article  Google Scholar 

  16. Y.U.C. Birol: J. Alloy. Compd., 2008, vol.458, pp. 265-70.

    Article  Google Scholar 

  17. R.K. Roy, S. Kar, K. Das and S. Das: J. Mater. Sci., 2006, vol. 41, pp. 1039-45.

    Article  Google Scholar 

  18. C.M. Allen, K. O’Reilly, B. Cantor and P.V. Evans: Prog. Mater. Sci., 1998, vol. 43, pp. 89-170.

    Article  Google Scholar 

  19. O. Daaland and E. Nes: Acta. Mater., 1996, vol. 44, pp. 1413-35.

    Article  Google Scholar 

  20. B. Bay and N. Hansen: Mater. Trans. A, 1984, vol. 15, pp. 287-97.

    Article  Google Scholar 

  21. J. Tang, X. Zhang, Y. Deng, Y. Du and Z. Chen: Comp. Mater. Sci., 2006, vol. 38, pp. 395-99.

    Article  Google Scholar 

  22. M. Kobayashi, Y. Takayama and H. Kato: Mater. Trans., 2004, vol. 45, pp. 3247-55.

    Article  Google Scholar 

  23. A.L. Etter, M.H. Mathon, T. Baudin, V. Branger and R. Penelle: Scripta Mater., 2002, vol. 46, 311-17.

    Article  Google Scholar 

  24. T. Suzuki, K. Arai, M. Shiga and Y. Nakamura: Mater. Trans. A, 1985, vol. 16, pp. 27-36.

    Article  Google Scholar 

  25. H. Kim, S. Kang, N. Tsuji and Y. Minamino: Acta. Mater., 2005, vol. 53, pp. 1737-49.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge with gratitude the financial support received from the Fundamental Research funds (2014zzts019) of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yu.

Additional information

Manuscript submitted January 30, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, H., Yu, K., Wen, L. et al. Microstructure and Mechanical Properties of AA1235 Aluminum Foil Stocks Produced Directly from Electrolytic Aluminum Melt. Metall Mater Trans B 47, 731–739 (2016). https://doi.org/10.1007/s11663-015-0463-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0463-2

Keywords

Navigation