Skip to main content
Log in

Carbothermal Reduction of Quartz in Methane–Hydrogen–Argon Gas Mixture

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Synthesis of silicon carbide (SiC) by carbothermal reduction of quartz in a CH4–H2–Ar gas mixture was investigated in a laboratory fixed-bed reactor in the temperature range of 1573 K to 1823 K (1300 °C to 1550 °C). The reduction process was monitored by an infrared gas analyser, and the reduction products were characterized by LECO, XRD, and SEM. A mixture of quartz–graphite powders with C/SiO2 molar ratio of 2 was pressed into pellets and used for reduction experiments. The reduction was completed within 2 hours under the conditions of temperature at or above 1773 K (1500 °C), methane content of 0.5 to 2 vol pct, and hydrogen content ≥70 vol pct. Methane partially substituted carbon as a reductant in the SiC synthesis and enhanced the reduction kinetics significantly. An increase in the methane content above 2 vol pct caused excessive carbon deposition which had a detrimental effect on the reaction rate. Hydrogen content in the gas mixture above 70 vol pct effectively suppressed the cracking of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.E. Saddow: Silicon carbide biotechnology: a biocompatible semiconductor for advanced biomedical devices and applications, Elsevier Science, Amsterdam, 2011, pp. 5–10.

    Google Scholar 

  2. S.E. Saddow and A. Agarwal: Advances in Silicon Carbide Processing and Applications, Artech House, Norwood, 2004, pp. 2–27.

    Google Scholar 

  3. H.P. Martin, R. Ecke, and E. Miiller: J. Eur. Ceram. Soc., 1998. vol. 18, pp. 1737–42.

    Article  Google Scholar 

  4. K. Järrendahl and R. Davis: Semiconductors & Semimetals, 1998, vol. 52, pp. 1–20.

    Article  Google Scholar 

  5. Y.L. Chiew and K.Y. Cheong: Mater. Sci. Eng. B, 2011, vol. 176, pp. 951–64.

    Article  Google Scholar 

  6. H.N. Baumann: J. Electrochem. Soc., 1952, vol. 99, pp. 109–14.

    Article  Google Scholar 

  7. G.S. Gupta, P. Vasanth Kumar, V.R. Rudolph, and M. Gupta: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1301–8.

    Article  Google Scholar 

  8. Y. Yang, K. Yang, Z.M. Lin, and J.T. Li: Mat. Res. Bull, 2007, vol. 42, pp. 1625–32.

    Article  Google Scholar 

  9. Y. Yang, K. Yang, Z.M. Lin, and J.T. Li: J. Europ. Ceram. Soc., 2009, vol. 29, pp. 175–80.

    Article  Google Scholar 

  10. O. Kordina, C. Hallin, A. Ellison, A.S. Bakin, I.G. Ivanov, A. Henry, R. Yakimova, M. Touminen, A. Vehanen, and E. Janzen: Appl. Phys. Lett., 1996, vol. 69, pp. 1456–8.

    Article  Google Scholar 

  11. A. Henry, I.G. Ivanov, T. Egilsson, C. Hallin, A. Ellison, O. Kordina, U. Lindefelt, and E. Janzen: Diam. Relat. Mater., 1997, vol. 6, 1289–92.

    Article  Google Scholar 

  12. Q.G. Fu, H.J. Li, X.H. Shi, K.Z. Li, J. Wei, and Z.B. Hu: Matetr. Chem. Phys., 2006, vol. 100, pp: 108–11.

    Article  Google Scholar 

  13. O. Ostrovski and G. Zhang: AIChE J., 2006, vol. 52, pp. 300–10.

    Article  Google Scholar 

  14. G. Zhang and O. Ostrovski: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 129–39.

    Article  Google Scholar 

  15. N. Anacleto, O. Ostrovski, and S. Ganguly: ISIJ Int., 2004, vol. 44, 1480–7.

    Article  Google Scholar 

  16. N. Anacleto and O. Ostrovski: Metall. Mater. Trans. B, 2004, vol. 35B: 609–15.

    Article  Google Scholar 

  17. J. Zhang and O. Ostrovski: Ironmak. Steelmak., 2002, vol. 29, pp. 15–21.

    Article  Google Scholar 

  18. J. Zhang and O. Ostrovski: ISIJ Int., 2001, vol. 41, pp. 333–9.

    Article  Google Scholar 

  19. H.C. Lee, S. Dhage, M.S. Akhtar, D.H. Kwak, W.J. Lee, C.Y. Kim and O.B. Yang: Curr. Appl. Phys., 2010, vol. 10, pp. S218–21.

    Article  Google Scholar 

  20. S. Cetinkaya and S. Eroglu: Int. J. Refract. Met. H., 2011, vol. 29, pp. 566–72.

    Article  Google Scholar 

  21. A. Agarwal and U. Pal: Metall. Mater. Trans. B, 1999, vol. 30, pp. 295–306.

    Article  Google Scholar 

  22. B.M. Moshtaghioun, A. Monshi, M.H. Abbasi, and F. Karimzadeh: Int. J. Refract. Met. H., 2011, vol. 29, pp. 645–50.

    Article  Google Scholar 

  23. E. DalMartello, G. Tranell, S. Gaal, O.S. Raaness, K. Tang and L. Arnberg: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 939–50.

    Article  Google Scholar 

  24. X. Li, G. Zhang, K. Tang, O. Ostrovski, and R. Tronstad: Metall. Mater. Trans. B, 2015. vol. 46, pp. 1343–52.

    Article  Google Scholar 

  25. A. Schei and S.H. Halvorsen: Proceedings from the Kjetil Motzfeldt Symposium, Trondheim, Norway. 1991. pp. 41–46.

  26. A.C.D. Chaklader and A.L. Roberts: J. Am. Ceram. Soc., 1961, vol. 44, pp. 35–41.

    Article  Google Scholar 

  27. X. Wan, G. Zhang, O. Ostrovski, and H. Aral: Proceedings of the Thirteenth International Ferroalloys Congress, Karaganda, Kazakhstan. pp. 739–48.

  28. G.A. Bootsma, W.F. Knippenberg, and G. Verspui: J. Cryst. Growth, 1971, vol. 11, pp. 297–309.

    Article  Google Scholar 

  29. H.J. Choi and J.G. Lee: J. Mater. Sci., 1995, vol. 30. pp. 1982–6.

    Article  Google Scholar 

  30. G. Urretavizcaya and J.M. Petro Lopez: J. Mater. Res., 1994, vol. 9, pp. 2981–6.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported under the Australian Research Council’s Linkage Projects funding scheme (Project No. LP100100866) and the Norwegian Research Council under the project Kiselrox (Project No. 228722/O30). The authors would also like to thank the Mark Wainwright Analytical Centre at the University of New South Wales for LECO analysis and the Electron Microscopy Centre (EMC) at the University of Wollongong for the electron microscopy characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Additional information

Manuscript submitted January 27, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, G., Tang, K. et al. Carbothermal Reduction of Quartz in Methane–Hydrogen–Argon Gas Mixture. Metall Mater Trans B 46, 2384–2393 (2015). https://doi.org/10.1007/s11663-015-0407-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0407-x

Keywords

Navigation