Skip to main content
Log in

Aluminum Deoxidation Equilibria in Liquid Iron: Part II. Thermodynamic Modeling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Al deoxidation equilibria in liquid iron over the whole composition range from very low Al ([pct Al] = 0.0027) to almost pure liquid Al were thermodynamically modeled for the first time using the Modified Quasichemical Model in the pair approximation for the liquid phase. The present modeling is distinguished from previous approaches in many ways. First, very strong attractions between metallic components, Fe and Al, and non-metallic component, O, were taken into account explicitly in terms of Short-Range Ordering. Second, the present thermodynamic modeling does not distinguish solvent and solutes among metallic components, and the model calculation can be applied from pure liquid Fe to pure liquid Al. Therefore, this approach is thermodynamically self-consistent, contrary to the previous approaches using interaction parameter formalism. Third, the present thermodynamic modeling describes an integral Gibbs energy of the liquid alloy in the framework of CALPHAD; therefore, it can be further used to develop a multicomponent thermodynamic database for liquid steel. Fourth, only a small temperature-independent parameter for ternary liquid was enough to account for the Al deoxidation over wide concentration (0.0027 < [pct Al] < 100) and wide temperature range [1823 K to 2139 K (1550 °C to 1866 °C)]. Gibbs energies of Fe-O and Al-O binary liquid solutions at metal-rich region (up to oxide saturation) were modeled, and relevant model parameters were optimized. By merging these Gibbs energy descriptions with that of Fe-Al binary liquid modeled by the same modeling approach, the Gibbs energy of ternary Fe-Al-O solution at metal-rich region was obtained along with one small ternary parameter. It was shown that the present model successfully reproduced all available experimental data for the Al deoxidation equilibria. Limit of previously used interaction parameter formalism at high Al concentration is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\( \Delta g_{ij} \) :

Gibbs energy change for the formation of two moles of (ij) pairs (J/mol)

\( \Delta S^{\text{config}} \) :

Configurational entropy of mixing (J/mol K)

[pct i]:

Mass percent of i (–)

\( a_{i} \) :

Raoultian activity of i (–)

\( e_{i}^{j} \) :

Wagner’s first-order interaction parameter of j on i (–)

\( f_{i} \) :

Henrian activity coefficient of i in mass pct scale (–)

\( g_{i}^{^\circ } \) :

Molar Gibbs energy of pure component i (J/mol)

\( h_{i} \) :

Henrian activity of i in mass pct scale (–)

K :

The equilibrium constant (–)

\( n_{i} \) :

Number of moles of i (mol)

\( n_{ij} \) :

Number of moles of (ij) pairs (mol)

R:

Gas constant (8.314 J/mol K)

\( r_{i}^{j} \) :

Wagner’s second-order interaction parameter of j on i (–)

T :

Absolute temperature (K)

\( X_{i} \) :

Mole fraction of i (–)

\( X_{ij} \) :

Pair fraction of (ij) pairs (–)

\( Y_{i} \) :

Coordination-equivalent fraction of i (–)

\( Z_{i} \) :

Coordination number of i (–)

\( Z_{ij}^{i} \) :

Coordination number of i in ij binary solution when all nearest neighbors of an i are j’s

\( \kappa \) :

Holcomb and Pierre’s model parameter for the exponential function,[63] (–)

MQM:

Modified Quasichemical Model

SRO:

Short-Range Ordering

CALPHAD:

CALculation of PHAse Diagram

WIPF:

Wagner’s Interaction Parameter Formalism

JSPS:

Japan Society for the Promotion of Science

UIPF:

Unified Interaction Parameter Formalism

FNN:

First-Nearest Neighbor

EMF:

Electro Motive Force

References

  1. L. E. Rohde, A. Choudhury, and M. Wahlster: Arch. Eisenhüttenwes., 1971, vol. 42, pp. 165-74.

    Google Scholar 

  2. C. Wagner: Thermodynamics of Alloys, Addision-Wesley Press, Cambridge, MA, 1952, pp. 47-51.

    Google Scholar 

  3. The 19th Committee in Steelmaking: Thermodynamic Data For Steelmaking, The Japan Society for Promotion of Science, Tohoku University Press, Sendai, Japan, 2010, pp. 10–13.

  4. R. J. Fruehan: Metall. Trans., 1970, vol. 1, pp, 3403-10.

    Article  Google Scholar 

  5. D. Janke and W. A. Fischer: Arch. Eisenhüttenwes., 1976, vol. 47, 195-8.

    Google Scholar 

  6. S. Dimitrov, A. Weyl, and D. Janke: Steel Res., 1995, vol. 66, pp. 3-7.

    Google Scholar 

  7. J. D. Seo, S.H. Kim, and K.R. Lee: Steel Res., 1998, vol. 69, pp. 49-53.

    Google Scholar 

  8. J. H. Swisher: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 123-124.

    Google Scholar 

  9. Y. J. Kang, M. Thunman, D. Sichen, T. Morohoshi, K. Mizukami, and K. Morita: ISIJ Int., 2009, vol. 49, pp. 1483-9.

    Article  Google Scholar 

  10. V. E. Shevtsov: Russ. Metall., 1981, vol. 1, pp. 52-7.

    Google Scholar 

  11. H. Suito, H. Inoue, and R. Inoue: ISIJ Int., 1991, vol. 31, pp. 1381-8.

    Article  Google Scholar 

  12. L. S. Darken: Trans. AIME, 1967, vol. 239, pp. 80-89.

    Google Scholar 

  13. C. H. P. Lupis and J. F. Elliott: Acta Metall., 1960, vol. 14, pp. 529-38.

    Article  Google Scholar 

  14. A.D. Pelton: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 869-76.

    Article  Google Scholar 

  15. S. Srikanth and K. T. Jacob: Metall. Trans. B, 1988, vol. 19B, pp. 269-75.

    Article  Google Scholar 

  16. I. H. Jung, S. A. Decterov, and A. D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493-507.

    Article  Google Scholar 

  17. A. D. Pelton, S. A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 651-9.

    Article  Google Scholar 

  18. A. D. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1355-60.

    Article  Google Scholar 

  19. H. Herty and J. M. Gaines: Trans. AIME, 1928, vol. 80, pp. 142-56.

    Google Scholar 

  20. F. Korber: Stahl und Eisen, 1932, vol. 52, pp. 133-44.

    Google Scholar 

  21. J. Chipman and K. L. Fetters: Trans. American Soc. Met., 1941, vol. 29, pp. 953-67.

    Google Scholar 

  22. C. R. Taylor and J. Chipman: Trans. AIME, 1943, vol. 154, pp. 228-47.

    Google Scholar 

  23. P. A. Distin, S. G. Whiteway, and C. R. Masson: Canadian Metall. Quarterly, 1971, vol. 10, pp. 13-8.

    Article  Google Scholar 

  24. W. A. Fischer and J. F. Schumacher: Arch. Eisenhüttenwes., 1978, vol. 49, pp. 431-5.

    Google Scholar 

  25. M. Nduaguba and J. F. Elliott: Metall. Trans. B, 1983, vol. 14B, pp. 679-83.

    Article  Google Scholar 

  26. M. N. Dastur and J. Chipman: Metals Trans., 1949, vol. 185, pp. 441-5.

    Google Scholar 

  27. N. A. Gokcen: Trans. AIME, 1956, vol. 206, pp. 1558-67.

    Google Scholar 

  28. T. P. Floridis and J. Chipman: Trans. Metall. Soc. AIME, 1958, vol. 212, pp. 549-53.

    Google Scholar 

  29. H. Sakao and K. Sano: Trans. JIM, 1960, vol. 1, pp. 38-42.

    Google Scholar 

  30. E. S. Tankins, N. A. Gokcen, and G. R. Belton: Trans. Metall. Soc. AIME, 1967, vol. 230, pp. 820-7.

    Google Scholar 

  31. V. H. Schenck and E. Steinmetz: Arch. Eisenhüttenwes., 1967, vol. 38, pp. 813-9.

    Google Scholar 

  32. K. Schwerdtfeger: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 1276-81.

    Google Scholar 

  33. M.K. Paek, J.M. Jang, Y.-B. Kang, and J.J. Pak: Metall. Mater. Trans. B, 2015. DOI:10.1007/s11663-015-0368-0.

  34. A. T. Phan, M. K. Paek, and Y. -B. Kang: Acta Mater., 2014, vol. 79, pp. 1-15.

    Article  Google Scholar 

  35. F. Wooley, J. F. Elliot: Trans. AIME, 1967, vol. 239, pp. 1872-83.

    Google Scholar 

  36. M. S. Petrushevsky, Yu. O. Esin, P. V. Gel’d, and V.M. Sandakov: Russ. Metall., 1972, vol. 6, pp. 149-53.

    Google Scholar 

  37. M.K. Paek, K.H. Do, Y.-B. Kang, I.H. Jung, and J.J. Pak: unpublished research, 2015.

  38. C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. -B. Kang, J. Melançon, A. D. Pelton, C. Robelin, and S. Petersen: CALPHAD, 2009, vol. 33, pp. 295-311.

    Article  Google Scholar 

  39. A. D. Pelton and Y. -B. Kang: Int. J. Mater. Res., 2007, vol. 98, pp. 907-17.

    Article  Google Scholar 

  40. Y. -B. Kang and A. D. Pelton: CALPHAD, 2010, vol. 34, 180-88.

    Article  Google Scholar 

  41. A. T. Dinsdale: CALPHAD, 1991, vol. 15, pp. 317-425.

    Article  Google Scholar 

  42. G. Eriksson and A. D. Pelton: Metall. Trans. B, 1993, vol. 24B, pp. 807-16.

    Article  Google Scholar 

  43. S. A. Decterov, E. Jak, P. C. Hayes, and A. D. Pelton: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 643-57.

    Article  Google Scholar 

  44. H. A. Wriedt: Bulletin of Alloy Phase Diagrams, 1985, vol. 6, pp. 548-53.

    Article  Google Scholar 

  45. S. Otsuka and Z. Kozuka: J. Jpn. Inst. Met., 1981, vol. 22, pp. 558.

    Article  Google Scholar 

  46. J. R. Taylor, A. T. Dinsdale, M. Hillert, and M. Selleby: CALPHAD, 1992, vol. 16, pp. 173-9.

    Article  Google Scholar 

  47. K. Fitzner: Thermochemica Acta, 1982, vol. 52, pp. 103-11.

    Article  Google Scholar 

  48. M. W. Chase Jr: NIST-JANAF Thermochemical Tables, AIP, Woodbury, NY, 1998.

    Google Scholar 

  49. M. Seiersten: in COST 507: Thermochemical Database for Light Metal Alloy, 1998, vol. 2.

  50. B. Sundman, I. Ohnuma, N. Dupin, U. R. Kattner, and S. G. Fries: Acta Mater., 2009, vol. 57, pp. 2896-908.

    Article  Google Scholar 

  51. J. Chipman and T. P. Floridis: Acta Metall., 1955, vol. 3, pp. 456-9.

    Article  Google Scholar 

  52. H. Mitani and H. Nagai: J. Jan. Inst. Met., 1968, vol. 32, pp. 752-5.

    Google Scholar 

  53. A. Coskun and J. F. Elliott: Trans. Metall. Soc. AIME, 1968, vol. 242, 253-5.

    Google Scholar 

  54. G. R. Belton and R. J. Fruehan: Trans. Metall. Soc. AIME, 1969, vol. 245, 113-7.

    Google Scholar 

  55. G. I. Batalin, E. A. Beloborodova, V. A. Stukalo, and L. V. Goncharuk: Russ. J. Phy. Chem., 1971, vol. 45, pp. 1139-40.

    Google Scholar 

  56. N. S. Jacobson and G. M. Nehrotra: Metall. Trans. B, 1993, vol. 24B, pp. 481-6.

    Article  Google Scholar 

  57. H. Itoh, M. Hino, and S. Banya: Tetsu-to-Hagané, 1997, vol. 83, pp. 773-8.

    Google Scholar 

  58. G. K. Sigworth and J. F. Elliott: Metals Sci., 1974, vol. 8, pp. 298-310.

    Article  Google Scholar 

  59. H. Yin: Proc. of Int. Conf. of AISTech 2005, Warrendale, PA, 2005, vol. 2, pp. 89–97.

  60. N. A. Gokcen and J. Chipman: J. Met., 1953, vol. 197, pp. 173-8.

    Google Scholar 

  61. A. McLean and H. B. Bell: J. Iron Steel Inst., 1965, vol. 203, p. 123-30.

    Google Scholar 

  62. E. T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, 1980, p. 81.

    Google Scholar 

  63. G.R. Holcomb and G.R. St. Pierre: Metall. Trans. B, 1992, vol. 23B, pp. 789–90.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by a Grant (NRF-2013K2A2A2000634) funded by the National Research Foundation of Korea, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Bae Kang.

Additional information

Manuscript submitted November 20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paek, MK., Pak, JJ. & Kang, YB. Aluminum Deoxidation Equilibria in Liquid Iron: Part II. Thermodynamic Modeling. Metall Mater Trans B 46, 2224–2233 (2015). https://doi.org/10.1007/s11663-015-0369-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0369-z

Keywords

Navigation