Skip to main content
Log in

Study of Solidification and Heat Transfer Behavior of Mold Flux Through Mold Flux Heat Transfer Simulator Technique: Part I. Development of the Technique

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A Mold Flux Heat Transfer Simulator technique was developed to investigate the solidification and heat transfer behavior of mold flux in this study. The results suggested that the responding temperatures and heat fluxes increase intensively within the first second, due to the direct heating from the liquid core. It takes 1 second for the system to be heated up and to form the initial solidified mold flux shell, such that the heat fluxes and the liquid front temperature would start to reduce after that. After 2.5 seconds, the in-mold responding temperature and heat fluxes are getting attenuated with the development of the mold flux solidification and crystallization. After 15-20 seconds, the system steps into a quasi-steady state, as the cooling potential becomes identical to the heating potential due to the further development of total thermal resistance that is introduced by the further solidification and crystallization of mold flux. In addition, a mathematic model was built to calculate the interfacial thermal resistance (R int) at the mold/flux interface, and the calculated interfacial thermal resistance was around 18.9 × 10−4 m2 K W−1, which accounts for about 78.4 pct of the total thermal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K.C. Mills, A.B. Fox: ISIJ Int., 2003, vol. 43 (10), pp. 161-166.

    Article  Google Scholar 

  2. J.A. Kromhout: Ph.D. Doctoral thesis, Technical University Delft, Delft, Netherlands, 2011.

  3. S. Sridhar, K.C. Mills, and S.T. Mallaband: Ironmaking and Steelmaking, 2002, vol. 29 (3), pp. 194-198.

    Article  Google Scholar 

  4. K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmaking and Steelmaking, 2005, vol. 32 (1), pp. 26-34.

    Article  Google Scholar 

  5. W. Wang, L. Zhou, and K. Gu: Met. Mater. Int., 2010, vol. 16 (6), pp. 913-920.

    Article  Google Scholar 

  6. H. Shibata, K. Kondo, M. Suzuki, and T. Emi: ISIJ Int., 1996, vol. 36, Supplement, pp. S179-S182.

    Article  Google Scholar 

  7. R. Scheel and W. Korte: Metall. Plant Technol., 1987, (6), pp. 22-33.

    Google Scholar 

  8. S. Ohmiya, K.T. Tacke, and K. Schwerdtfeger. Ironmak. Steelmak., 1983, 10:24.

    Google Scholar 

  9. J. Holzhauzer, K. Spitzer and K. Schwerdtfeger: Steel Research, 1999, vol. 70 (7) 252-258.

    Google Scholar 

  10. J. Cho, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1998, vol. 38 (5), pp. 440-446.

    Article  Google Scholar 

  11. J. Cho, T. Emi, H. Shibata, and M. Suzuki: ISIJ Int., 1998, vol. 38 (8), pp. 834-842.

    Article  Google Scholar 

  12. A. Yamauchi, K. Sorimachi, T. Sakuraya, and T. Fujii: ISIJ Int., 1993, vol. 33 (1), pp. 140-147.

    Article  Google Scholar 

  13. W. Wang and A.W. Cramb: ISIJ Int., 2005, vol. 45 (12), pp. 1864-1870.

    Article  Google Scholar 

  14. K. Gu, W. Wang, J. Wei, H. Matsuura, F. Tsukihashi, I. Sohn, and D.J. Min: Metall. Mater. Trans. B, 2012, vol. 43 (6), pp. 1393-1404.

    Article  Google Scholar 

  15. N. Machingawuta, S. Bagha and P. Grieveson: Proc. Steelmaking Conf. 1991, vol. 74 publ. ISS-AIME, Warrendale, pp. 163-170.

    Google Scholar 

  16. MS Jenkins: Ph.D. Thesis, Monash Univ. Australia, 1999.

  17. G. Wen, S. Sridhar, P. Tang, X. Qi, and Y. Liu: ISIJ Int., 2007, vol. 47 (8), pp. 1117-1125.

    Article  Google Scholar 

  18. G. Wen, P. Tang, B. Yang, X. Zhu (2012) ISIJ Int. 52:1179-1185.

    Article  Google Scholar 

  19. A. Badri, T.T. Natarajan, C.C. Snyder, K.D. Powers, F.J. Mannion, and A.W. Cramb: Metall. Mater. Trans. B, 2005, vol. 36 (3), pp. 355-371.

    Article  Google Scholar 

  20. H. Zhang, W. Wang, and D. Zhou: 8th European Continuous Casting Conference (ISBN-978-3-200-03664-2), Congress Graz, Austria, 2014.

  21. E.-Y. Ko and I. Sohn: 5th International Congress on the Science and Technology of Steelmaking, Dresden, Germany, TU Bergakademie Freiberg, Germany, 2012.

  22. E.-Y. Ko, J. Choi, J.Y. Park, and I. Sohn: Met. Mater. Int., 2014, vol. 20 (1), pp. 141-151.

    Article  Google Scholar 

  23. J.V. Beck: IHCP1D: “A Program for Calculating Surface Heat Fluxes from Transient Temperatures Inside Solids,” Version 5.31, Beck Engineering Consultants Company, Houston, TX, 1997.

  24. H. Nakada, M. Susa, Y. Seko, M. Hayashi and K. Nagata. ISIJ Int., vol. 48 (2008), No. 4, pp. 446-453.

    Article  Google Scholar 

  25. H. Zhang, W. Wang, D. Zhou, F. Ma, B. Lu, and L. Zhou. Metall. Mater. Trans. B, 2014, vol. 45B (3), pp. 1038-1047.

    Article  Google Scholar 

  26. F. Neumann: ISS Steelmaking Conference Proceedings, 1996, Pittsburgh, vol. 79, pp. 249-57.

  27. A. Moitra and B.G. Thomas: 76th Steelmaking Conf., Dallas, TX, ISS, Warrendale, PA, 1993, vol. 76, pp. 657-67.

  28. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34 (5), pp. 685-705.

    Article  Google Scholar 

  29. M. Susa, A. Kushimoto, H. Toyota, M. Hayashi, R. Endo, and Y. Kobayashi: ISIJ Int., 2009, vol. 49 (11), pp. 1722-1729.

    Article  Google Scholar 

  30. K. Gu, W. Wang, L. Zhou, F. Ma, and D. Huang: Metall. Mater. Trans. B, 2012, vol. 43 (4), pp. 937-945.

    Article  Google Scholar 

  31. H. Nakada and K. Nagata: ISIJ Int., 2006, vol. 46 (3), 441-449.

    Article  Google Scholar 

  32. S. Ozawa, M. Susa, T. Goto, R. Endo, and K.C. Mills: ISIJ Int., 2006, vol. 46 (3), pp. 413-419.

    Article  Google Scholar 

  33. M. Susa, K.C. Mills, M.J. Richardson, R. Taylor, and D. Stewart: Ironmaking and Steelmaking, 1994, vol. 21 (4), pp. 279-286.

    Google Scholar 

  34. H. Nakada, M. Suza, Y. Seko, M. Hayashi, and K. Nagata: ISIJ Int., 2008, vol. 48 (4), pp. 446-453.

    Article  Google Scholar 

  35. Y. Shiraishi: Handbook of Physico-chemical Properties at High Temperatures (Chap. 10), ISIJ, Tokyo, 1988.

  36. L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 43 (2), pp. 354-362.

    Article  Google Scholar 

  37. M. Hanao, and M. Kawamoto: ISIJ Int., 2008, vol. 48 (2), pp. 180-185.

    Article  Google Scholar 

  38. M. Hanao, M. Kawamoto, and A. Yamanaka: ISII Int., 2012, vol. 52 (7), pp. 1310-1319.

    Article  Google Scholar 

  39. K. Watanabe, H. Okamoto, M. Suzuki, H. Kondo, and T. Shiomi: 79th Steelmaking and 55th Ironmaking Conf., Pittsburgh, ISS-AIME, 1996, p. 92.

Download references

Acknowledgments

The financial support from NSFC (51274244, 51322405) and Hunan Excellent Young Scholar Funding (14JJ1005) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Manuscript submitted September 28, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, W., Ma, F. et al. Study of Solidification and Heat Transfer Behavior of Mold Flux Through Mold Flux Heat Transfer Simulator Technique: Part I. Development of the Technique. Metall Mater Trans B 46, 1419–1430 (2015). https://doi.org/10.1007/s11663-015-0318-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0318-x

Keywords

Navigation