Skip to main content
Log in

Nodule Evolution of Ductile Cast Iron During Solidification

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Ductile cast irons are ferrous alloys in which precipitation of graphite in the form of spherical nodules is embedded in a metal matrix to obtain ductility on the material. Despite the importance of the shape of the nodules, the models proposed to predict the solidification of ductile irons assume a perfect spherical shape during the growing process up to the final solidification of the material, which is proved not to be the case in all castings depending on the processing conditions. The influence of the process parameters on the geometry of the nodules in ductile irons was experimentally evaluated and a model to predict the evolution of nodules during solidification was proposed. The proposed model for growth predicts changes in the nodule count as well as in the nodularity based on different laws for carbon diffusion according to the solid fraction, helping to understand the trends found experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S. Murcia, M. Paniagua, E. Ossa, Materials Science and Engineering: A 566(20), 2013, P 8-15.

    Article  Google Scholar 

  2. K. Kocatepe, M. Cerah, M. Erdogan, Journal of materials processing technology 178 (2006) 44-51.

    Article  Google Scholar 

  3. M. Hafiz, Journal of materials science 36 (2001) 1293-1300.

    Article  Google Scholar 

  4. A. Basso, J. Sikora, International Journal of Metalcasting 6 (2012) 7-14.

    Google Scholar 

  5. R.E. Boeri: Ph.D. Thesis, University of British Columbia, 1989.

  6. P.M. Dardati: Doctoral Thesis, Universidad Nacional de Córdoba, 2005.

  7. G. Rivera, R. Boeri, J. Sikora, Materials science and technology 18 (2002) 691-697.

    Article  Google Scholar 

  8. E. Fra, H. López, International Journal of Metalcasting 4 (2010) 35-61.

    Google Scholar 

  9. D.M. Stefanescu: Science and Engineering of Casting Solidification, Springer, New York, 2008.

    Google Scholar 

  10. C. Arturo: Análisis Experimental y Numérico de la solidificación de las Fundiciones Nodulares, vol Ingeniero Civil, Universidad de Chile, Santiago, 2005.

  11. J. Zhou, China Foundry 8 (2011) 447-462.

    Google Scholar 

  12. S.E. Wetterfall, H. Fredriksson, M. Hillert, J Iron Steel Inst 210 (1972) 323-333.

    Google Scholar 

  13. K.C. Su, I. Ohnaka, I. Yamauchi, and T. Fukusako: MRS Proc., Cambridge University Press, vol. 34, 1984.

  14. F. Edward: MRS Proc., Cambridge Univ Press, vol 34, 1984.

  15. D. Stefanescu, C. Kanetkar: Computer Simulation of Microstructural Evolution, The Metallurgical Society, Warrendale, 1985, pp. 171–88.

    Google Scholar 

  16. D. Stefanescu and D. Bandyopadhyay: in Physical Metallurgy of Cast Iron IV, MRS, Pittsburg, 1989, pp. 15–26.

  17. A. Chiarella: Análisis Experimental y Numérico de la solidificación de las Fundiciones Nodulares, vol Ingeniero Civil, Universidad de Chile, Santiago, 2005.

  18. A.F.M.S.S. Inc: AFS Ductile Iron Handbook, AFS, Des Plaines, 1993.

  19. H. Fredriksson and I.L. Svensson: MRS Proc., Cambridge Univ Press, vol. 34, 1984.

  20. S. Chang, D. Shangguan, and D. Stefanescu: Ninety-Fifth Annual Meeting American Foundrymen’s Society, 1991, pp. 531–41.

  21. S.C. Murcia: Estudio del efecto de las variables de proceso sobre la calidad final en fundiciones de hierro nodular, vol Production Engineer, Eafit University, 2010.

  22. A. KIM, S.L. COCKCROFT, A.M. OMRANA, Journal of Alloys and Compounds 476 (2009) 728-732.

    Article  Google Scholar 

  23. R.B. Gundlach: Nodularity, its Measurement, and its Correlation with the Mechanical Properties of Ductile Iron, Stork Climax Research Services, Michigan, 2006.

  24. ASTM E3-01: Standard Practice for Preparation of Metallographic Specimens, ASTM International, Philadelphia, 2001, 12pp.

  25. B. Imasogie, U. Wendt: J Miner. Mater. Charact. Eng, 2004, vol. 3, pp. 1-12.

    Google Scholar 

  26. A. SheikhAbdolhossein, M. Nili-Ahmadabadi, International Journal of Cast Metals Research 18 (2005) 295-300.

    Article  Google Scholar 

  27. D.J. Celentano, S.O. Martínez, and E.O.I. de Navarra: Un Modelo Termomecánico para Problemas de Solidificación de Metales, Universitat Politècnica de Catalunya, Barcelona, 1994.

  28. S.C. Murcia: M.Sc. Thesis, Universidad Eafit, 2012.

  29. R.W. Heine, C.R. Loper, and P.C. Rosenthal: Principles of metal casting, McGraw-Hill, Tokyo, 2001.

    Google Scholar 

  30. W. Kapturkiewicz, A.A. Burbelko, E. Fraś, M. Górny, D. Gurgul, Journal of Achievements in Materials and Manufacturing Engineering 43 (2010) 310-323.

    Google Scholar 

  31. D. Celentano: VULCAN: Coupled Thermomecanical Finite Element Analysis for Solidification Problems, User’s and Verification Manuals, 2004.

  32. S. Bockus, G. Zaldarys, Metalurgija 48 (2009) 19.

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the foundry Furima S.A.S, Medellín, Colombia, for providing the materials used in this study. It is also important to acknowledge the economic support for this study provided by the Administrative Department of Science, Technology and Innovation, Colciencias (Colombia), Contract No. 525-09. Finally, the authors gratefully acknowledge the financial support provided by FONDECYT (Project No. 1130404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ossa.

Additional information

Manuscript submitted June 18, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murcia, S.C., Ossa, E.A. & Celentano, D.J. Nodule Evolution of Ductile Cast Iron During Solidification. Metall Mater Trans B 45, 707–718 (2014). https://doi.org/10.1007/s11663-013-9979-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9979-5

Keywords

Navigation