Skip to main content
Log in

Transport and Entrapment of Particles in Steel Continuous Casting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A particle-capture model based on local force balances has been developed, implemented into computational models of turbulent fluid flow and particle transport, and applied to simulate the entrapment of slag inclusions and bubbles during the continuous casting of steel slabs. Turbulent flow of molten steel is computed in the nozzle and mold using transient computational fluid flow models, both with and without the effects of argon gas injection. Next, the transport and capture of many particles are simulated using a Lagrangian approach. Particles touching the dendritic interface may be pushed away, dragged away by the transverse flow, or captured into the solidifying shell according to the results of a local balance of ten different forces. This criterion was validated by reproducing experimental results in two different systems. The implications of this criterion are discussed quantitatively. Finally, the fluid flow/particle transport model results and capture criterion are applied together to predict the entrapment distributions of different sized particles in a typical slab caster. More large particles are safely removed than small ones, but the entrapment rate into the solidifying shell as defects is still very high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ρ :

Density (kg/m3)

ρ f :

Liquid density (kg/m3)

ρ p :

Particle density (kg/m3)

u :

Liquid velocity (m/s)

v :

Particle velocity (m/s)

t :

Time (s)

p :

Pressure (Pa)

μ :

Dynamic viscosity of fluid (Pa s)

ν :

Kinematic viscosity of fluid (m2/s)

f :

Body force density (per unit volume) (N/m3)

x p :

Particle position vector (m)

m p :

Mass of a particle (kg)

F D :

Drag force (N)

F L :

Lift force (N)

F added-mass :

Added mass force (virtual mass force) (N)

F G :

Gravitational force (N)

F press :

Pressure gradient force (N)

F stress :

Stress gradient force (N)

F I :

Magnitude of Van de Waals interfacial force (N)

F Grad :

Magnitude of surface energy gradient force (N)

F lub :

Magnitude of lubrication force (N)

V sol :

Solidification front advancing speed (m/s)

R p :

Particle radius (m)

r tip :

Dendrite tip radius (m)

a 0 :

Liquid atomic radius (m)

h 0 :

Distance between dendrite tip and particle (m)

Δσ 0 :

Surface energy difference (J/m2)

σ sp :

Surface tension between shell and particle (J/m2)

σ sl :

Surface tension between shell and liquid (J/m2)

σ pl :

Surface tension between particle and liquid (J/m2)

ξ :

Distance between dendrite tip center to particle center (m)

χ :

Solidification direction (m)

η :

Direction across solidification (m)

g :

Gravity acceleration (m/s2)

d p :

Particle diameter (m)

C D :

Drag coefficient

Rep :

Particle Reynolds number

u 1 :

Streamwise liquid velocity (m/s)

v 1 :

Streamwise particle velocity (m/s)

U s :

Relative streamwise velocity between liquid and particle (m/s)

G :

Wall normal velocity gradient of u 1 (1/s)

C A :

Correction factor on added mass force

Ac:

Acceleration parameter

α :

Constant for surface energy gradient force

β :

Constant for surface energy gradient force (m)

References

  1. B.G. Thomas: in Making, Shaping and Treating of Steel: Continuous Casting, vol. 5, A. Cramb, ed., 2003, pp. 14.1–14.41.

  2. Q. Yuan, B.G. Thomas and S.P. Vanka: Metal. & Material Trans. B., 2004, vol. 35B (4), pp. 703-714.

    Article  Google Scholar 

  3. L.C. Hibbeler and B.G. Thomas: in 7th Eur. Contin. Cast. Conf., Dusseldorf, Germany. 2011. Vol. 1.

  4. R.A. Rege, E.S. Szekeres and W.D. Forgeng: Met. Trans. AIME, 1970, vol. 1, p. 2652.

    Google Scholar 

  5. L. Zhang and B.G. Thomas: ISIJ International, 2003, vol. 43 (3), pp. 271-291.

    Article  Google Scholar 

  6. L. Zhang, S. Yang, X. Wang, K. Cai, J. Li, X. Wan, and B.G. Thomas: Metall. Mater.Trans. B, 2007, vol. 28B, pp. 63-83.

    Article  Google Scholar 

  7. Y. Miki and S. Takeuchi: Iron Steel Inst. Jpn., 2003, vol. 43, pp. 1548-55.

    Article  Google Scholar 

  8. L. Zhang, Jun Aoki and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 361-379.

    Article  Google Scholar 

  9. W.H. Emling, T.A. Waugaman, S.L. Feldbauer, and A.W. Cramb: in Steelmak. Conf. Proc., Chicago, IL. 1994. Vol. 77, pp. 371–79.

  10. B.G. Thomas and L. Zhang: ISIJ Internat., 2001, vol. 41 (10), pp. 1181-1193.

    Article  Google Scholar 

  11. B.G. Thomas: in Making, Shaping and Treating of Steel: Continuous Casting, vol. 5, A. Cramb, ed., AISE Steel Foundation, Pittsburgh, PA, 2003, pp. 5.1–5.24.

  12. Q. Yuan, B.G. Thomas and S.P. Vanka: Metal. & Material Trans. B., 2004, vol. 35B, pp. 685-702.

    Article  Google Scholar 

  13. R. Chaudhary, C. Ji, B.G. Thomas and S.P. Vanka: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 987-1007.

    Article  Google Scholar 

  14. FLUENT6.2, User Manual, Ansys Inc., 10 Cavendish Court, Lebanon, New Hampshire, 2009.

  15. B.G. Thomas, A. Dennisov and H. Bai: in 80th Steelmak. Confer. Proc., 1997, pp. 375–384.

  16. L. Zhang, Y. Wang and X. Zuo: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 534–550.

    Article  Google Scholar 

  17. Y. Wang and L. Zhang: Metall. Mater. Trans. B., 2011, vol. 42(6), pp. 1319–51.

    Article  Google Scholar 

  18. L. Zhang, Y. Wang, E. Martinez, and K.D. Peaslee: in CFD Modeling and Simulation in Materials. L. Nastac, L. Zhang, B.G. Thomas, A. Sabau, N. El-Kaddah, A.C. Powell and H. Combeau, eds., TMS, Warrendale, PA, 2012, pp. 3–16.

  19. D. Shangguan, S. Ahuja and D.M. Stefanescu: Metallurgical Transactions A, 1992, vol. 23A, pp. 669-680.

    Article  Google Scholar 

  20. J. Potschke and V. Rogge: Journal of Crystal Growth, 1989, vol. 94, pp. 726-738.

    Article  Google Scholar 

  21. D.M. Stefanescu and A.V. Catalina: ISIJ Internat., 1998, vol. 38, pp. 503-505.

    Article  Google Scholar 

  22. G. Wilde and J.H. Perepezko: Materials Science & Engineering A, 2000, vol. 283, pp. 25-37.

    Article  Google Scholar 

  23. Y. Wang, M. Valdez and S. Sridhar: Z. Metallkd., 2002, vol. 93, pp. 12-20.

    Article  Google Scholar 

  24. J.K. Kim and P.K. Rohatgi: Metall. & Mater. Trans. B, 1998, vol. 29A, pp. 351-375.

    Google Scholar 

  25. D.R. Uhlmann and B. Chalmers: J. Appl. Phys., 1964, vol. 35, pp. 2986-2993.

    Article  Google Scholar 

  26. G.F. Bolling and J.A. Cisse: J. Cryst. Growth, 1971, vol. 10, pp. 55-66.

    Article  Google Scholar 

  27. D.M. Stefanescu, F.R. Juretzko, B.K. Dhindaw, A. Catalina and S. Sen: Metall.Mater. Trans. A, 1998, vol. 29A, pp. 1697-1706.

    Article  Google Scholar 

  28. D.M. Stefanescu, F.R. Juretzko, B.K. Dhindaw, A. Catalina and S. Sen: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1691-1696.

    Google Scholar 

  29. A. Catalina, D.M. Stefanescu and S. Mukherjee: Metall. Mater. Trans. A, 2000, vol. 31A (10), pp. 2559-2568.

    Article  Google Scholar 

  30. G. Kaptay: Metall. Mater. Trans. A, 1999, vol. 30A (7), pp. 1887-1890.

    Article  Google Scholar 

  31. G. Kaptay: Metallurgical and Materials Transactions A, 2001, vol. 32A (4), pp. 993-1005.

    Article  Google Scholar 

  32. G. Kaptay and K.K. Kelemen: ISIJ International, 2001, vol. 41 (3), pp. 305-307.

    Article  Google Scholar 

  33. G. Kaptay: Metall. Mater. Trans. A, 2002, vol. 33A (6), pp. 1869-1873.

    Article  Google Scholar 

  34. Z. Wang, K. Mukai and J. Lee: ISIJ International, 1999, vol. 39 (6), pp. 553-562.

    Article  Google Scholar 

  35. Q. Han and J.D. Hunt: J. Crystal Growth, 1995, vol. 152, pp. 221-227.

    Article  Google Scholar 

  36. Q. Han: “The Mechanisms for Particle Pushing,” University of Oxford, Oxford, UK, 1994.

    Google Scholar 

  37. B. Grimm, P. Andrzejewski, K. Muller, and K.-H. Tacke: Steel Res., 1999, vol. 70, pp. 420–29.

    Google Scholar 

  38. Yufeng Wang, Anping Dong and L. Zhang: Steel Res. Int., 2011, vol. 82, pp. 428–39.

    Article  Google Scholar 

  39. C. Pfeiler, B.G. Thomas, M. Wu, A. Ludwig and A. Kharicha: Steel Research International, 2008, vol. 79 (8), pp. 599-607.

    Google Scholar 

  40. Q. Yuan and B.G. Thomas: Proc. 3rd Int. Congr. Sci. Technol. Steelmak., Charlotte, NC. 2005. pp. 745–62.

  41. B.E. Launder and D.B. Spalding: Comp. Meth. Applied Mechanics and Engr., 1974, vol. 13 (3), pp. 269-289.

    Article  Google Scholar 

  42. B. Kader: Int. J. Heat Mass Trans., 1981, vol. 24 (9), pp. 1541-1544.

    Article  Google Scholar 

  43. H. Werner and H. Wengle: 8th Symp. Turbul. Shear Flows, Munich. 1991.

  44. S. Mahmood: MS Thesis, University of Illinois at Urbana-Champaign, 2006, 202 pp.

  45. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B (2), pp. 253-267.

    Article  Google Scholar 

  46. F. Nicoud and F. Ducros: Flow Turb. Comb., 1999, vol. 63, pp. 183-200.

    Article  Google Scholar 

  47. B.E. Launder and D.B. Spalding: Mathematical Models of Turbulence, London: Academic Press, 1972.

    Google Scholar 

  48. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang and J. Zhu:: Comput. Fluid., 1995, vol. 24 (3), pp. 227-238.

    Article  Google Scholar 

  49. R. Chaudhary, S.P. Vanka, and B.G. Thomas: CCC Report 201017, University of Illinois at Urbana-Champaign, Aug 12, 2010.

  50. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B 2003, vol. 34B (5), pp. 685-705.

    Article  Google Scholar 

  51. S. Koric, L.C. Hibbeler, R. Liu and B.G. Thomas: Numerical Heat Transfer, Part B: Fundamentals, 2010, vol. 58 (6), pp. 371-392.

    Article  Google Scholar 

  52. Q. Yuan: Ph.D. Thesis, University of Illinois at Urbana-Champaign, IL, 2004, 196 pp.

  53. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling: Numerical Recipes, Cambridge University Press, New York, NY, 1988, pp. 289-293.

    Google Scholar 

  54. Q. Yuan, B. Zhao, S.P. Vanka and B.G. Thomas: Steel Res. Int., 2005, vol. 76 , pp. 33-43 (Special Issue: Simulation of Fluid Flow in Metallurgy).

    Google Scholar 

  55. B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka and M.B. Assar ISIJ Int. Jpn, 2001, vol. 41 (10), pp. 1262–71.

    Article  Google Scholar 

  56. H. Shibata, H. Yin, S. Yoshinaga, T. Emi and M. Suzuki: ISIJ International, 1998, vol. 38 (2), pp. 149-156.

    Article  Google Scholar 

  57. Y. Miki and B.G. Thomas: Metall. Mater. Trans. B, 1999, vol. 30B (4), pp. 639-654.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Science Foundation (Grants DMI-01-15486 and CMMI-11-30882) and the Continuous Casting Consortium at the University of Illinois for support of this project. Thanks are also due to the National Center for Supercomputing Applications at the University of Illinois for computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Thomas.

Additional information

Manuscript submitted July 30, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, B.G., Yuan, Q., Mahmood, S. et al. Transport and Entrapment of Particles in Steel Continuous Casting. Metall Mater Trans B 45, 22–35 (2014). https://doi.org/10.1007/s11663-013-9916-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9916-7

Keywords

Navigation