Skip to main content
Log in

Preparation of Reduced Iron Powders from Mill Scale with Microwave Heating: Optimization Using Response Surface Methodology

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Preparation of the reduced iron powder has been attempted with mill scale as the iron-bearing material and with wood charcoal as the reducing agent through microwave heating. The response surface methodology (RSM) is used to optimize the process conditions, with wood charcoal, process temperature, and holding time being the three process parameters. The regressed model equation eliminating the insignificant parameters through an analysis of variance (ANOVA) was used to optimize the process conditions. The optimum process parameters for the preparation of reduced iron powders have been identified to be the wood charcoal of 13.8 pct, a process temperature of 1391 K (1118 °C), and a holding time of 43 minutes. The optimum conditions resulted in reduced iron powders with a total iron content of 98.60 pct and a metallization ratio of 98.71 pct. X-ray fluorescence (XRF) was used to estimate the elemental contents of the reduced iron powder, which meets the specification of the HY100.23 first-class iron powder standard. Additionally X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) analysis were performed and the results are compiled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Xieting: Powder Metall. Ind., 1997, vol. 7, no. 3, pp. 31-39.

    Google Scholar 

  2. H. Feng-lin: Powder Metall. Ind., 2003, vol. 13, no. 2, pp. 16-21.

    Google Scholar 

  3. W.B. Eisen, B.L. Ferguson, R.M. German, R. Iacocca, P.W. Lee, D. Madan, K. Moyer, H. Sanderow, and Y. Trudel, eds.: ASM Metals Handbook, Powder Metal Technologies and Applications, vol. 7, ASM International, Materials Park, OH, 1998, p. 117.

  4. C. Zhaoding: Powder Metall. Ind., 1994, no. 2, pp. 66–68.

  5. J. Zhihe: Powder Metall. Ind., 1995, no. 5, pp. 169–73.

  6. A. Bose: Metal Powder Report, 2002, vol. 57, pp. 88.

    Article  Google Scholar 

  7. R.K. Sidhu: J. Alloy. Compd., 2002, vol. 346, pp. 250-4.

    Article  CAS  Google Scholar 

  8. L. Lefebvre and S. Pelletier: J. Magnet. Magnet. Mater., vol. 176, nos. 2–3, pp. L93–96.

  9. S.B. Bibikov, E.I. Kulikovskij, A.M. Kuznetsov, V.N. Gorshenev, V.V. Orlov, and M.V. Prokof’ jev: Second International Workshop on Ultrawide Band Ultra-short Impulse Signal Proceeding UWBUSIS, 2004, p. 129.

  10. P.B. Jana, A.K. Mallick, and K. De: IEEE Trans. Electromagnet. Compatib., 1992, vol. 34, no. 4, pp. 478-81.

    Article  Google Scholar 

  11. M.A. Solomon, P. Kurian, M.R. Anantharaman, and P.A. Joy: Polym. Plastic Technol. Eng., 2004, vol. 43, no. 4, pp. 1013-28.

    Article  Google Scholar 

  12. Y. Rui-Gang: J. Magnet. Magnet. Mater., 2011, vol. 323, pp. 1805-10.

    Article  Google Scholar 

  13. L. Liu, Y. Duan, L. Ma, S. Liu, and Z. Yu: Appl. Surf. Sci., 2010, vol. 257, pp. 842-6.

    Article  CAS  Google Scholar 

  14. A. Volpe, A. Lopez, G. Mascolo, and A. Detomaso: Chemosphere, 2004, vol. 57, no. 7, pp. 579-86.

    Article  CAS  Google Scholar 

  15. A. Ghauch, J. Rima, C. Amine, and M. Martin-Bouyer: Chemosphere, 1999, vol. 39, no. 8, pp. 1309-15.

    Article  CAS  Google Scholar 

  16. A. Ghauch: Chemosphere, 2008, vol. 71, no. 5, pp. 816-26.

    Article  CAS  Google Scholar 

  17. J. Guan, L. Zhou, S. Nie, T. Yan, X. Tang, and W. Pan: Int. J. Pharmaceut., 2010, vol. 383, nos. 1–2, pp. 30–36.

  18. INACG: Nutrition Research, Nutrition Foundation, New York, 1977, pp. 1–29.

  19. M. Arredondo, V. Salvat, F. Pizarro, and M. Olivares: Nutrition Res., 2006, vol. 26, no. 5, pp. 235-39.

    Article  CAS  Google Scholar 

  20. C.K. Yeung, D.D. Miller, Z. Cheng, and R.E. Glahn: J. Food Sci., 2005, vol. 70, no. 3, pp. 199-203.

    Article  Google Scholar 

  21. T. Umadevi, M.G. Sampath Kumar, P.C. Mahapatra, T. Mohan Babu, and M. Ranjan: Ironmaking Steelmaking, 2009, vol. 36, pp. 409-15.

    Article  CAS  Google Scholar 

  22. S. Cho and J. Lee: Met. Mater. Int.., 2008, vol. 14, pp. 193-96.

    Article  CAS  Google Scholar 

  23. W.H. Sutton, M.F. Iskander, and R.L. Beatty: Mater. Res. Soc., 1992, vol. 269, pp. 3-20.

    Article  CAS  Google Scholar 

  24. M.S. Venkateshl and G.S.V. Raghavan: Biosyst. Energ., 2004, vol. 88, pp. 1-18.

    Article  Google Scholar 

  25. D. Bas and I.H. Boyac: J. Food Eng., 2007, vol. 78, pp. 836-45.

    Article  CAS  Google Scholar 

  26. C. Liyana-Pathirana and F. Shahidi: Food Chem., 2005, vol. 93, no. 1, pp. 47-56.

    Article  CAS  Google Scholar 

  27. K. Anupam, S. Dutta, C. Bhattacharjee, and S. Datta: Chem. Eng. J., 2011, vol. 173, no. 1, pp. 135-43.

    Article  CAS  Google Scholar 

  28. Z. Erbay and F. Icier: J. Food Eng., 2009, vol. 91, no. 4, pp. 533-41.

    Article  CAS  Google Scholar 

  29. V.A.-E. King and R.R. Zall: Food Res. Int., 1992, vol. 25, no. 1, pp, 1-8.

    Article  Google Scholar 

  30. R. Azargohar and A.K. Dalai: Micropor. Mesopor. Mater., 2005, vol. 85, pp. 219-25.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (no. 51090385) and the National Basic Research Program of China (no. 2007CB613606) is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbo Zhu or Jinhui Peng.

Additional information

Manuscript submitted September 24, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Q., Zhu, H., Peng, J. et al. Preparation of Reduced Iron Powders from Mill Scale with Microwave Heating: Optimization Using Response Surface Methodology. Metall Mater Trans B 44, 1478–1485 (2013). https://doi.org/10.1007/s11663-013-9872-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9872-2

Keywords

Navigation