Skip to main content
Log in

Production of Solar-grade Silicon by Halidothermic Reduction of Silicon Tetrachloride

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To develop a new production process for solar-grade Si, a fundamental study on halidothermic reduction based on the subhalide reduction of SiCl4 by Al subchloride reductant was carried out at 1273 K (1000 °C). Aluminum subchloride reductant was produced by reacting AlCl3 vapor with metallic Al. Silicon tetrachloride was reduced to Si in a gas-phase reaction by vapors of Al subchloride reductant. Silicon deposits produced in the halidothermic reduction were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray fluorescence (XRF). The Al content in the Si deposits was no more than 0.5 at pct. The Si deposits have a fibrous or hexagonal columnar morphology with diameters ranging from 100 nm to several tens of microns. The reaction was discussed by comparison with the results of the conventional aluminothermic reduction of SiCl4. Moreover, the halidothermic reduction reactions were analyzed from thermodynamical viewpoints. This study demonstrates the feasibility of a halidothermic reduction for producing solar-grade Si with high productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.D. Maycock: PV NEWS, PV Energy Systems, Inc., Williamsburg, VA, 2009.

  2. S. Nakamura: Industrial Rare Metals, Annual Review 2008, vol. 124, Arumu Publish Co., Tokyo, Japan, 2008.

    Google Scholar 

  3. K. Yasuda, K. Morita, and T.H. Okabe: J. MMIJ, 2010, vol. 126, pp. 115-23.

    CAS  Google Scholar 

  4. S. Nakamura: Rare Metal News, Arumu Publish Co., Tokyo, Japan.

  5. H. Schweickert, K. Reuschel, and H. Gutsche: U.S. Patent, US3,011,877, 1961.

  6. H. Gutsche: U.S. Patent, US3,042,494, 1962.

  7. Y. Yatsurugi, A. Yusa, and N. Takahashi: Japanese Patent Applications, JPA1978–106626, 1978.

  8. K. Yasuda and T.H. Okabe: J. Jpn. Inst. Met., 2010, vol. 74, pp. 1-9.

    Article  CAS  Google Scholar 

  9. T.H. Okabe, K. Yasuda, and T. Oi: Proc. 2008 Joint Symposium on Molten Salts, Kobe, Japan, 2008, p. 270.

    Google Scholar 

  10. H.S.N. Setty, C.L. Yaws, B.R. Martin, and D.J. Wangler: U.S. Patent, US3,963,838, 1976.

  11. S.K. Iya, R.N. Flagella, and F.S. Dipaolo: J. Electrochem. Soc., 1982, vol. 129, pp. 1531-35.

    Article  CAS  Google Scholar 

  12. M. Stephen: PCT International Patent, WO1996/041036, 1996.

  13. S. Wakamatsu and H. Oda: PCT International Patent, WO2001/085613, 2001.

  14. A. Sanjurjo, L. Nanis, K. Sancier, R. Bartlett, and V. Kapur: J. Electrochem. Soc., 1981, vol. 128, pp. 179-84.

    Article  CAS  Google Scholar 

  15. E. Robert and T. Zijlema: PCT International Patent, WO2006/100114, 2006.

  16. S. Honda, M. Yasueda, S. Hayashida, and M. Yamaguchi: Japanese Patent Applications, JPA2007–145663, 2007.

  17. K. Saegusa and T. Yamabayashi: PCT International Patent, WO2007/001093, 2007.

  18. S. Sakaguchi: PCT International Patent, WO2007/119605, 2007.

  19. K. Suzuki, T. Kumagai, and N. Sano: ISIJ Int., 1992, vol. 32, pp. 630-34.

    Article  CAS  Google Scholar 

  20. T. Ikeda and M. Maeda: ISIJ Int., 1992, vol. 32, pp. 635-42.

    Article  CAS  Google Scholar 

  21. N. Yuge, H. Baba, and F. Aratani: U.S. Patent, US5,182,091, 1993.

  22. S. Anders: European Patent, EP0,699,625, 1996.

  23. T. Yoshikawa and K. Morita: Sci. Technol. Adv. Mater., 2003, vol. 4, pp. 531-37.

    Article  CAS  Google Scholar 

  24. D.W. Lyon, C.M. Olson, and E.D. Lewis: J. Electrochem. Soc., 1949, vol. 96, pp. 359-63.

    Article  CAS  Google Scholar 

  25. L. Bertrand, N. Star, and C.M. Olson: U.S. Patent, US3,012,862, 1961.

  26. M.W. Chase Jr., C. A. Davies, J.R. Downey Jr., D.J. Frurip, R.A. McDonald and A.N. Syverud: JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, American Institute of Physics for the National Bureau of Standards, New York, NY, 1985.

  27. I. Barin: Thermochemical Data of Pure Substances, 3rd ed., VCH Verlagsgesellschaft, Weinheim, Germany, 1995.

    Book  Google Scholar 

  28. S. Yoshizawa, T. Hatano, and S. Sakaguchi: Kogyo Kagaku Zasshi, 1961, vol. 64, pp. 1347-50.

    CAS  Google Scholar 

  29. J.C. Terry, A. Lippman, R.F. Sebenik, and H.G. Harris: Canadian Patent, CA1,003,223, 1977.

  30. P. Woditsch, M. Abels, and B. Brazel: U.S. Patent, US4,525,334, 1985.

  31. T. Yamabayashi and M. Hata: PCT International Patent, WO2007/077957, 2007.

  32. T.H. Okabe, O. Takeda, K. Saegusa, and T. Yamabayashi: Private communications, October 12, 2005.

  33. T.H. Okabe and K. Saegusa: Japanese Patent Applications, JPA2009–091228, 2009.

  34. K. Yasuda, K. Saegusa, and T.H. Okabe: Mater. Trans., 2009, vol. 50, pp. 2873-78.

    Article  CAS  Google Scholar 

  35. K. Yasuda, K. Saegusa, and T.H. Okabe: unpublished research, The University of Tokyo and Sumitomo Chemical Co., Ltd., 2010.

  36. R.H. Singleton: U.S. Patent, US2,766,111, 1956.

  37. H.H. Schobert: U.S. Patent, US3,950,162, 1976.

  38. T. Uda, T.H. Okabe, and Y. Waseda: J. Jpn. Inst. Met., 1998, vol. 62, pp. 796-802.

    CAS  Google Scholar 

  39. J.J. Myrick: U.S. Patent Application Publication, US2002/0184971, 2000.

  40. B. Yuan and T.H. Okabe: J. Electrochem. Soc., 2007, vol. 154, pp. E1-E7.

    Article  CAS  Google Scholar 

  41. B. Yuan and T.H. Okabe: Mater. Trans., 2007, vol. 48, pp. 2687-94.

    Article  CAS  Google Scholar 

  42. B. Yuan and T.H. Okabe: J. Alloy. Compd., 2008, vol. 454, pp. 185-93.

    Article  CAS  Google Scholar 

  43. K. Landry, S. Kalogeropoulou, and N. Eustathopoulos: Mater. Sci. Eng. A, 1998, vol. A254, pp. 99-111.

    CAS  Google Scholar 

  44. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Metals Park, OH, 1990.

    Google Scholar 

  45. L. Csepregi, J.W. Mayer, and T.W. Sigmon: Phys. Lett. A., 1975, vol. 54A, pp. 157-58.

    Article  CAS  Google Scholar 

  46. G.L. Olson and J.A. Roth: Mater. Sci. Rep., 1988, vol. 3, pp. 1-77.

    Article  CAS  Google Scholar 

  47. C. Spinella, S. Lombardo, and F. Priolo: J. Appl. Phys., 1998, vol. 84, pp. 5383-414.

    Article  CAS  Google Scholar 

  48. J.R. Davis Jr., A. Rohatgi, R.H. Hopkins, P.D. Blais, P. Rai-Choudhury, J.R. McCormick, and H.C. Mollenkopf: IEEE Trans. Electron Devices, 1980, vol. ED-27, pp. 677-87.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Kazuki Morita, Institute of Industrial Science of the University of Tokyo, and Dr. Naoyuki Goto, Sumitomo Chemical Co. Ltd., for fruitful discussions for this project. Part of this project is financially supported by Sumitomo Chemical Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru H. Okabe.

Additional information

Manuscript submitted April 29, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasuda, K., Saegusa, K. & Okabe, T.H. Production of Solar-grade Silicon by Halidothermic Reduction of Silicon Tetrachloride. Metall Mater Trans B 42, 37–49 (2011). https://doi.org/10.1007/s11663-010-9440-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9440-y

Keywords

Navigation