Skip to main content
Log in

High-Temperature Volatilization Mechanism of Stibnite in Nitrogen-Oxygen Atmospheres

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The volatilization of stibnite (Sb2S3) in nitrogen and mixtures of nitrogen-oxygen was investigated in the temperature range 973 K to 1423 K (700 °C to 1150 °C). The overall volatilization reaction study was carried out using a thermogravimetric analysis technique under various gas flow rates. The results indicated that in an inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3(g) with a linear rate up to about 1173 K (900 °C). At temperatures above 1223 K (950 °C), stibnite decomposes to antimony and sulfur gas, impairing the antimony volatilization. For linear behavior in nitrogen gas, kinetic constants were determined, and an activation energy of 134 kJ/mol was calculated for the volatilization reaction. However, in the presence of oxygen, antimony can be volatilized efficiently as valentinite (Sb2O3) at low oxygen concentrations (approximately 1 to 5 pct) at approximately 1173 K to 1223 K (900 °C to 950 °C); otherwise, at higher partial pressures of oxygen, the volatilization of antimony is limited by the formation of nonvolatile cervantite (SbO2). In highly oxidizing atmospheres, a high vaporization of antimony could be achieved only at temperatures higher than 1423 K (1150 °C) where cervantite becomes unstable and decomposes into SbO(g) and 0.5O2(g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Winkel, J. Wochele, C. Ludwig, I Alxneit, and M Sturzenegger: Miner. Eng., 2008, vol. 21, no. 10, pp. 731-42.

    Article  CAS  Google Scholar 

  2. A. Vartiainen, P. Taskinen, and A. Jokilaakso: H.H. Kellog International Symposium, Quantitative Description of Metal Extraction Processes, Eds. N.J. Themelis and P.F. Duby, TMS, Warrendale, PA, 1991, pp. 45-63.

    Google Scholar 

  3. Z. Zivkovic, N. Strbac, D. Zivkovic, D. Grujicic, and B. Boyanov: Thermochim. Acta, 2002, vol. 383, pp. 137-43.

    Article  CAS  Google Scholar 

  4. Y. Hua, Y. Yang, and F. Zhu: J. Mater. Sci., 2003, vol. 19, no. 6, pp. 619-22.

    CAS  Google Scholar 

  5. L. Komorova, A. Holmstrom, and I. Imris: Scand. J. Metall., 1985, vol. 14, pp. 103-12.

    CAS  Google Scholar 

  6. J. Mauser: Metall. Trans. B, 1982, vol. 13B, pp. 511-13.

    Article  CAS  ADS  Google Scholar 

  7. T. Li and J.P. Hager: Reinhardt Schuhmann International Symposium, TMS, Warrendale, PA, 1986, pp. 845-68.

    Google Scholar 

  8. G.A. Brooks, W.J. Rankin, and N.B. Gray: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 873-84.

    Article  CAS  ADS  Google Scholar 

  9. A. Roine: HSC Chemistry 5.1, OutoKumpu Research Oy, Pori, Finland, 2002.

  10. I. Barin: Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, Germany, 1989.

    Google Scholar 

  11. I. Barin: Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, Germany, 1993.

    Google Scholar 

  12. Glushko Thermocenter of the Russian Academy of Sciences, IVTAN Association, Izhorskaya 13/19, 127412, Moscow, Russia, 1994.

  13. O. Knacke, O. Kubaschewsky, and K. Hesselman: Thermochemical Properties of Inorganic Substances, 2nd ed., Springer-Verlag, Berlin, Germany, 1991.

    Google Scholar 

  14. Scientific Group Thermodata Europe (SGTE), Grenoble, France, 1994.

  15. Landolt-Bornstein: Thermodynamic Properties of Inorganic Material, SGTE, Springer-Verlag, Berlin, Germany, 2001.

  16. I. Barin: Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, Germany, 1995.

    Book  Google Scholar 

  17. L. Pankratz: Bulletin No. 672, U.S. Bureau of Mines, Washington, DC, 1982.

  18. V.G. Trofimov, A.I. Sheinkman, and G.V. Kleshchev: Izvestiya VUZ Fizika, 1973, vol. 3, pp. 135-37.

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the National Fund for Scientific and Technological Development (FONDECYT) of Chile for the financial support of this research through Project #1080296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Padilla.

Additional information

Manuscript submitted March 23, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padilla, R., Ramírez, G. & Ruiz, M.C. High-Temperature Volatilization Mechanism of Stibnite in Nitrogen-Oxygen Atmospheres. Metall Mater Trans B 41, 1284–1292 (2010). https://doi.org/10.1007/s11663-010-9429-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9429-6

Keywords

Navigation