Skip to main content
Log in

Al-TiC composites In Situ-processed by ingot metallurgy and rapid solidification technology: Part I. Microstructural evolution

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present work was undertaken to highlight a novel in situ process in which traditional ingot metallurgy plus rapid solidification techniques were used to produce Al-TiC composites with refined microstructures and enhanced dispersion hardening of the reinforcing phases. Microstructures of the experimental materials were comprehensively characterized by optical microscopy, electron microscopy, and X-ray diffraction. The results show that the in situ-synthesized TiC particles possess a face-centered cubic crystal structure with an atomic composition of TiC0.8 and a lattice parameter of 0.431 nm. The typical ingot metallurgy microstructures exhibit aggregates of TiC particles segregated generally at the α-Al subgrain or grain boundaries and consisting of fine particles of 0.2 to 1.0 µm in size. The rapidly solidified microstructures formed under certain thermal history conditions contained a uniform, fine-scale dispersion of TiC phase particles with a size range of 40 to 80 nm in an α-Al supersaturated matrix of 0.30 to 0.85 µm in grain size. These dispersed TiC particles generally have a semicoherent relationship with the α-Al matrix. Based on the experimental results, a comprehensive kinetic mechanism of in situ TiC synthesis, which includes a solid-liquid interface reaction between the carbon particles and the Al melt and multiple nucleation and growth of TiC from the Al melt, was proposed. Then, the evolution of the aggregate TiC particles in a superheated melt before rapid solidification, i.e., dissolution, nucleation, and growth of the regenerated TiC dispersed particles, was analyzed. Furthermore, the behavior of rapid solidification kinetics, the nucleation of α-Al on TiC-dispersed particles, and the interaction between TiC particles and the solidification front were documented experimentally and theoretically. These studies provided the theoretical criteria and an experimental basis for the optimum design of this kind of composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.V. Nair, J.K. Tien, and R.C. Bates: Int. Met. Rev., 1985, vol. 30, pp. 275–90.

    CAS  Google Scholar 

  2. V.C. Nardone and K.W. Prewo: Scripta Metall., 1986, vol. 20, pp. 43–48.

    Article  CAS  Google Scholar 

  3. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia: J. Mater. Sci., 1991, vol. 26, pp. 1137–56.

    Article  CAS  Google Scholar 

  4. P.K. Rohatgi: Key Eng. Mater., 1995, vols. 104–107, pp. 293–312.

    Google Scholar 

  5. A. Chrysanthou: Key Eng. Mater., 1995, vols. 104–107, pp. 381–86.

    Google Scholar 

  6. T.Z. Kattamis and T. Suganuma: Mater. Sci. Eng., 1990, vol. A128, pp. 241–52.

    CAS  Google Scholar 

  7. R. Mehrabian: MRS Symp., 1988, vol. 120, pp. 3–21.

    CAS  Google Scholar 

  8. T.W. Clyne and J.F. Mason: Metall. Trans. A, 1987, vol. 18A, pp. 1519–30.

    CAS  Google Scholar 

  9. Y. Wu and E.J. Lavernia: Metall. Trans. A, 1992, vol. 23A, pp. 2923–37.

    CAS  Google Scholar 

  10. A.R.C. Westwood: Metall. Trans. B, 1988, vol. 19B, pp. 155–64.

    CAS  Google Scholar 

  11. Martin Marietta Corp.: U.S. Patent 4,915,908, 1990.

  12. P. Sahoo and M.J. Koczak: Mater. Sci. Eng., 1991, vol. A114, pp. 37–44.

    Google Scholar 

  13. I. Gotman, M.J. Koczak, and E. Shtessel: Mater. Sci. Eng., 1994, vol. A187, pp. 189–99.

    CAS  Google Scholar 

  14. A. Bergman, A. Jarfors, Z. Liu, and H. Fredriksson: Key Eng. Mater., 1993, vols. 79–80, pp. 213–34.

    Article  Google Scholar 

  15. C. Raghunath, M.S. Bhat, and P.K. Rohatgi: Scripta Metall. Mater., 1995, vol. 32, pp. 577–82.

    Article  CAS  Google Scholar 

  16. M.J. Koczak and K.S. Kumar: U.S. Patent 4,808,372, 1989.

  17. M.K. Premkumar and M.G. Chu: Metall. Trans. A, 1993, vol. 24A, pp. 2358–62.

    CAS  Google Scholar 

  18. P.K. Rohatgi, R. Asthana, and F. Yarandi: in Solidification of Metal Matrix Composites, P.K. Rohatgi, ed., TMS, Warrendale, PA, 1990, pp. 51–75.

    Google Scholar 

  19. A. Mortensen, J.A. Cornie, and M.C. Flemings: Metall. Trans. A, 1988, vol. 19A, pp. 709–21.

    CAS  Google Scholar 

  20. J.D. Briant, J.R. Maisano, D.T. Winter, and A.R.H. Barrett: Scripta Metall., 1990, vol. 24, pp. 2209–14.

    Article  Google Scholar 

  21. A. Mortensen: in Solidification of Metal Matrix Composites, P.K. Rohatgi, ed., TMS, Warrendale, PA, 1990, pp. 1–21.

    Google Scholar 

  22. D.M. Stefanescu, A. Moitra, A.S. Kacar, and B.K. Dhindaw: Metall. Trans. A, 1990, vol. 21A, pp. 231–39.

    CAS  Google Scholar 

  23. R. Asthana, S. Das, T.K. Dan, and P.K. Rohatgi: J. Mater. Sci. Lett., 1986, vol. 5, pp. 1083–86.

    Article  CAS  Google Scholar 

  24. T.S. Srivatsan and T.S. Sudarshan: in Rapid Solidification Technology, T.S. Srivatsan and T.S. Sudarshan, eds., Technomic Publishing Company, Lancaster, PA, 1993, p. 603.

    Google Scholar 

  25. E.E. Underwood: Quantitative Stereology, Addison-Wesley Publishing Co., London, 1970.

    Google Scholar 

  26. F.H. Hayes: in Ternary Alloys, A. Petzow and G. Effenberg, eds., VCH Publishers, New York, NY, 1990, p. 557.

    Google Scholar 

  27. V. Moisy-Maurice, N. Lorenzelli, C.H. De Novion, and P. Convert: Acta Metall., 1982, vol. 30, pp. 769–79.

    Google Scholar 

  28. X.C. Tong and H.S. Fang: J. Alloys Compounds, 1996, vol. 239, pp. 203–08.

    Article  CAS  Google Scholar 

  29. J.F. Nie, S. Sridhara, and B.C. Muddle: Metall. Trans. A, 1992, vol. 23A, pp. 3193–3205.

    CAS  Google Scholar 

  30. R.L. Fullman: Trans. AIME, 1953, vol. 197, pp. 447–52.

    CAS  Google Scholar 

  31. R.A. Rapp and X. Zheng: Metall. Trans. A, 1991, vol. 22A, pp. 3071–75.

    CAS  Google Scholar 

  32. A.M. Kanury: Metall. Trans. A, 1992, vol. 23A, pp. 2349–56.

    CAS  Google Scholar 

  33. X.C. Tong: Ph.D. Thesis, Tsinghua University, Beijing, 1995.

    Google Scholar 

  34. M.J. Whelan: Met. Sci. J., 1969, vol. 3, pp. 95–97.

    CAS  Google Scholar 

  35. J. Szekely and C.W. Chang: JOM, 1986, No. 9, pp. 6–11.

  36. U.H. Tundal and N. Ryum: Metall. Trans. A, 1992, vol. 23A, pp. 433–44.

    CAS  Google Scholar 

  37. C. Wagner: Z. Elektrochemie, 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  38. R. Elliott: Cast Iron Technology, Butterworth and Co., London, 1988, pp. 79–85.

    Google Scholar 

  39. D. Turnbull and R. Vonnegut: Ind. Eng. Chem., 1952, vol. 44, pp. 1292–97.

    Article  CAS  Google Scholar 

  40. W.J. Boettinger and J.H. Perepezko: in Rapidly Solidified Crystalline Alloys, S.K. Das, B.H. Kear, and C.M. Adam, eds., TMS, Warrendale, PA, 1985, pp. 21–58.

    Google Scholar 

  41. M.G. Chu and D.A. Granger: Metall. Trans. A, 1990, vol. 21A, pp. 205–12.

    CAS  Google Scholar 

  42. J. Lipton, W. Kurz, and R. Trivedi: Acta Metall., 1987, vol. 35, pp. 957–64.

    Article  CAS  Google Scholar 

  43. S.N. Omenyi and A.W. Neumann: J. Appl. Phys., 1976, vol. 47, pp. 3956–62.

    Article  CAS  Google Scholar 

  44. D.M. Stefanescu, B.K. Dhindaw, A.S. Kacar, and A. Moitra: Metall. Trans. A, 1988, vol. 19A, pp. 2847–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, X.C., Fang, H.S. Al-TiC composites In Situ-processed by ingot metallurgy and rapid solidification technology: Part I. Microstructural evolution. Metall Mater Trans A 29, 875–891 (1998). https://doi.org/10.1007/s11661-998-0278-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0278-8

Keywords

Navigation