Skip to main content
Log in

Microtexture Evolution of Titanium Alloy During Hot Deformation: For Better Understanding the Role of Primary α Grains

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Regions with sharp local texture, called macrozones, are often found in titanium alloy forgings and can reduce fatigue performances. This study observed the evolution of macrozones during hot compression of the Ti–5Al–2Sn–2Zr–4Mo–4Cr alloy in the α + β field. The results show that the macrozones are primarily related to the prior β grains and remained stable during compression. We analyzed the evolution of the β phase inter-structure at various deformation parameters, discussed the role of the primary α grains on the recrystallization of β grains. From studying the microstructural characteristics of the material, the effect of deformation parameters on the microstructure evolution was discussed by combining the effect of the primary α grains. New insights to identify the stability of the macrozones are revealed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.L. Semiatin: Metall. Mater. Trans. A, 2020, vol. 53A, pp. 2593–625.

    Article  Google Scholar 

  2. D. Qin, F. Zhao, Y. Li: Mater. Sci. Eng. A, 2022, vol. 841.

  3. D.G. Leo Prakash, P. Honniball, D. Rugg, P.J. Withers, J. Quinta Da Fonseca, M. Preuss: Acta Mater., 2013, vol. 61(9), pp. 3200–13.

  4. D. Banerjee and J.C. Williams: Acta Mater., 2013, vol. 61(3), pp. 844–79.

    Article  CAS  Google Scholar 

  5. A.P. Woodfield, M.D. Gorderman, R.R. Corderman, J.A. Sutliff, B. Yamrom: Proc. 8th World Conf. Titan., Science and Technology, Birmingham, UK, 1995, pp. 1116–23.

  6. N. Gey, P. Bocher, E. Uta, L. Germain, and M. Humbert: Acta Mater., 2012, vol. 60(6–7), pp. 2647–55.

    Article  CAS  Google Scholar 

  7. M.G. Glavicic, B.B. Bartha, S.K. Jha, and C.J. Szczepanski: Mater. Sci. Eng. A, 2009, vol. 513–514, pp. 325–28.

    Article  Google Scholar 

  8. J. Qiu, Y. Ma, J. Lei, Y. Liu, A. Huang, D. Rugg, and R. Yang: Metall. Mater. Trans. A, 2014, vol. 45(13), pp. 6075–87.

    Article  CAS  Google Scholar 

  9. A.L. Pilchak, R.E.A. Williams, and J.C. Williams: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 106–24.

    Article  CAS  Google Scholar 

  10. K. Le Biavant, S. Pommier, and C. Prioul: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25(6), pp. 527–45.

    Google Scholar 

  11. M.H. Pourian, F. Bridier, P. Pilvin, and P. Bocher: Int. J. Fatigue, 2016, vol. 85, pp. 85–97.

    Article  CAS  Google Scholar 

  12. C. Lavogiez, C. Dureau, Y. Nadot, P. Villechaise, S. Hémery: Acta Mater., 2023, vol. 244.

  13. L. Germain, N. Gey, M. Humbert, P. Vo, M. Jahazi, and P. Bocher: Acta Mater., 2008, vol. 56(16), pp. 4298–308.

    Article  CAS  Google Scholar 

  14. L. Germain, N. Gey, M. Humbert, P. Bocher, and M. Jahazi: Acta Mater., 2005, vol. 53(13), pp. 3535–43.

    Article  CAS  Google Scholar 

  15. Z.B. Zhao, Z. Liu, Q.J. Wang, J.R. Liu, and R. Yang: J. Mater. Sci. Technol., 2019, vol. 35(4), pp. 591–95.

    Article  Google Scholar 

  16. Z.B. Zhao, Q.J. Wang, J.R. Liu, and R. Yang: J. Alloys Compd., 2017, vol. 712, pp. 179–84.

    Article  CAS  Google Scholar 

  17. I. Bantounas, D. Dye, and T.C. Lindley: Acta Mater., 2010, vol. 58(11), pp. 3908–18.

    Article  CAS  Google Scholar 

  18. A.L. Pilchak, J. Li, and S.I. Rokhlin: Metall. Mater. Trans. A, 2014, vol. 45(10), pp. 4679–97.

    Article  CAS  Google Scholar 

  19. Z.B. Zhao, Q.J. Wang, J.R. Liu, and R. Yang: Acta Mater., 2017, vol. 131, pp. 305–14.

    Article  CAS  Google Scholar 

  20. Z.B. Zhao, Q.J. Wang, H. Wang, J.R. Liu, and R. Yang: J. Appl. Crystallogr., 2018, vol. 51(4), pp. 1125–31.

    Article  CAS  Google Scholar 

  21. L. Germain, N. Gey, and M. Humbert: Ultramicroscopy, 2007, vol. 107(12), pp. 1129–35.

    Article  CAS  Google Scholar 

  22. C. Cayron, B. Artaud, and L. Briottet: Mater. Charact., 2006, vol. 57(4–5), pp. 386–401.

    Article  CAS  Google Scholar 

  23. M.G. Glavicic, P.A. Kobryn, and S.L. Semiatin: Mater. Sci. Eng. A, 2004, vol. 385(1–2), pp. 372–76.

    Article  Google Scholar 

  24. S. Hémery, J.C. Stinville, F. Wang, M.A. Charpagne, M.G. Emigh, T.M. Pollock, V. Valle: Acta Mater., 2021, vol. 219.

  25. T. Furuhara, B. Poorganji, H. Abe, and T. Maki: JOM, 2007, vol. 59(1), pp. 64–67.

    Article  CAS  Google Scholar 

  26. L. Li, M.Q. Li, and J. Luo: Acta Mater., 2015, vol. 94, pp. 36–45.

    Article  CAS  Google Scholar 

  27. F. Warchomicka, C. Poletti, and M. Stockinger: Mater. Sci. Eng. A, 2011, vol. 528(28), pp. 8277–85.

    Article  CAS  Google Scholar 

  28. L. Li, J. Luo, J.J. Yan, and M.Q. Li: J. Alloys Compd., 2015, vol. 622, pp. 174–83.

    Article  CAS  Google Scholar 

  29. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. Elsevier, New York, 2004, pp. 333–78.

    Book  Google Scholar 

  30. Y. Li, B. Gu, S. Jiang, Y. Liu, Z. Shi, J. Lin: Int. J. Plast., 2020, vol. 134.

  31. S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51(9), pp. 2685–99.

    Article  CAS  Google Scholar 

  32. V. Yadav, N. Moelans, Y. Zhang, D. Juul Jensen: Acta Mater., 2021, vol. 221.

  33. N. Moelans, B. Blanpain, and P. Wollants: Acta Mater., 2006, vol. 54(4), pp. 1175–84.

    Article  CAS  Google Scholar 

  34. N. Moelans, B. Blanpain, and P. Wollants: Acta Mater., 2007, vol. 55(6), pp. 2173–82.

    Article  CAS  Google Scholar 

  35. K. Chang, W. Feng, and L.Q. Chen: Acta Mater., 2009, vol. 57(17), pp. 5229–36.

    Article  CAS  Google Scholar 

  36. K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé: Prog. Mater. Sci., 2018, vol. 92(17), pp. 284–359.

    CAS  Google Scholar 

  37. P. Vo, M. Jahazi, and S. Yue: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2965–80.

    Article  Google Scholar 

  38. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett: Mater. Today, 1998, vol. 1 (2), pp. 14–15.

  39. H. Jazaeri and F.J. Humphreys: Acta Mater., 2004, vol. 52(11), pp. 3239–250.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Youth Innovation Promotion Association CAS (No. 2020193), CAS Project for Young Scientists in Basic Research (YSBR-025) and National Science and Technology Major Project (J2019-VI-0005-0119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. B. Zhao, Q. J. Wang or Y. J. Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z.B., Zhang, B.H., Wang, Q.J. et al. Microtexture Evolution of Titanium Alloy During Hot Deformation: For Better Understanding the Role of Primary α Grains. Metall Mater Trans A 54, 2890–2902 (2023). https://doi.org/10.1007/s11661-023-07066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07066-0

Navigation