Skip to main content
Log in

Numerical Simulations of Locked Lamellar Eutectic Growth Patterns

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We present two-dimensional numerical simulations of tilted lamellar growth patterns during directional solidification of nonfaceted binary eutectic alloys in the presence of an anisotropy of the free energy \(\gamma \) of the interphase boundaries in the solid. We used a dynamic boundary-integral (BI) method. The physical parameters were those of the transparent eutectic \(\mathrm CBr_4\)-\(\mathrm C_2Cl_6\) alloy. As in Ghosh et al. (Phys Rev E 91, 022407, 2015), the anisotropy of \(\gamma \) was described by a model function with tunable parameters. The lamellar-locking effect in the vicinity of a deep minimum of the interfacial energy was reproduced. For a weak anisotropy, the lamellar tilt angle \(\theta _t\) was shown to depend on the growth conditions. We systematically studied the influence of usual control parameters (pulling velocity, temperature gradient, lamellar spacing, alloy concentration) on the tilted-lamellar pattern. We identified experimentally accessible conditions under which \(\theta _t\) falls close to the theoretical prediction based on the so-called symmetric-pattern approximation. We finally simulated locked and weakly locked lamellar patterns and found empirically a good morphological matching with experimental observations during directional solidification of thin \(\mathrm CBr_4\)-\(\mathrm C_2Cl_6\) samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Kwon, M.L. Bowers, M.C. Brandes, V. McCreary, I.M. Robertson, P. Sudaharshan Phani, H. Bei, Y.F. Gao, G.M. Pharr, E.P. George, and M.J. Millsa: Acta Mater., 2015, vol. 89, pp. 315–26.

  2. J. Llorca and V. M. Orera: Progr. Mater. Sci., 51, 711-809 (2006).

    Article  CAS  Google Scholar 

  3. J. Choi, A. A. Kulkarni, E. Hanson, D. Bacon-Brown, K. Thornton, and P. V. Braun: Adv. Optical Mater., 6, 1701316 (2018).

    Article  Google Scholar 

  4. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 4th ed., Trans Tech Publications Ltd, 1998.

  5. J. A. Dantzig and M. Rappaz, Solidification, 2nd Edition, EPFL Press, Lausanne (2016).

    Google Scholar 

  6. S. Akamatsu and M. Plapp: Curr. Opin. Solid State Mater. Sci., 20, 46-54 (2016).

    Article  CAS  Google Scholar 

  7. L. M. Hogan, R. W. Kraft, and F.D. Lemkey: Adv. Mater. Res., 5, 83-126 (1971).

    CAS  Google Scholar 

  8. R.W. Kraft: Trans. Metall. Soc. AIME, 224, 65-75 (1962).

    CAS  Google Scholar 

  9. S. K. Aramanda, S. Khanna, S. K. Salapaka, K. Chattopadhyay, and A. Choudhury: Metall. Mater. Trans. A, 51, 6387-6405 (2020).

    Article  CAS  Google Scholar 

  10. K. A. Jackson and J. D. Hunt: Trans. Metall. Soc. AIME, 236, 1129-1142 (1966).

    CAS  Google Scholar 

  11. B. Caroli, C. Caroli, G. Faivre, and J. Mergy: J. Cryst. Growth, 118, 135-150 (1992).

    Article  CAS  Google Scholar 

  12. S. Akamatsu, S. Bottin-Rousseau, M. Şerefoğlu, and G. Faivre: Acta Mater., 60, 3199-3205 (2012).

    Article  CAS  Google Scholar 

  13. S. Akamatsu, S. Bottin-Rousseau, M. Şerefoğlu, and G. Faivre: Acta Mater., 60, 3206-3214 (2012).

    Article  CAS  Google Scholar 

  14. S. Ghosh, A. Choudhury, M. Plapp, S. Bottin-Rousseau, G. Faivre, and S. Akamatsu: Phys. Rev. E, 91, 022407 (2015).

    Article  Google Scholar 

  15. S. Bottin-Rousseau, O. Senninger, G. Faivre, and S. Akamatsu: Acta Mater., 150, 16-24 (2018).

    Article  CAS  Google Scholar 

  16. Z. Tu, J. Zhou, L. Tong, and Z. Guo: J. Cryst. Growth, 532, 125439 (2020).

    Article  CAS  Google Scholar 

  17. A. Karma and A. Sarkissian: Met. Trans. A, 27, 635-656 (1996).

    Article  Google Scholar 

  18. J. Mergy, G. Faivre, C. Guthmann, and R. Mellet: J. Cryst. Growth, 13, 353-368 (1993).

    Article  Google Scholar 

  19. M. Ginibre, S. Akamatsu, and G. Faivre: Phys. Rev. E, 56, 780-796 (1997).

    Article  CAS  Google Scholar 

  20. S. Akamatsu, S. Bottin-Rousseau, M. Perrut, G. Faivre, V.T. Witusiewicz, and L. Sturz: J. Cryst. Growth, 299, 418-428 (2007).

    Article  CAS  Google Scholar 

  21. K. Kassner and C. Misbah: Phys. Rev. A, 44, 6513-6532 (1991).

    Article  CAS  Google Scholar 

  22. D.W. Hoffman and J.W. Cahn: Surf. Sci., 1972, vol. 31, pp. 368–88.

  23. C. Herring: Phys. Rev., 82, 87-93 (1951).

    Article  CAS  Google Scholar 

  24. R. Folch and M. Plapp: Phys. Rev. E, 72, 011602 (2005).

    Article  CAS  Google Scholar 

  25. K.B. Kim, J. Liu, N. Marasli, and J.D. Hunt: Acta Metall. Mater., 1995, vol. 43, pp. 2143–47.

  26. G. Faivre and J. Mergy: Phys. Rev. A, 45, 7320-7329 (1992).

    Article  CAS  Google Scholar 

  27. V.T. Witusiewicz, U. Hecht, and S. Rex: J. Cryst. Growth, 372, 57-64 (2013).

    Article  CAS  Google Scholar 

  28. R. Kokotin and U. Hecht: Comput. Mater. Sci., 86, 30-37 (2014).

    Article  CAS  Google Scholar 

  29. S. Ghosh and M. Plapp: Acta Mater., 140, 140-148 (2017).

    Article  CAS  Google Scholar 

  30. C. Zhua, Y. Koizumi, A. Chiba, K. Yuge, K. Kishida, and H. Inui: Intermetallics, 116, 106590 (2020).

    Article  Google Scholar 

  31. K. D. Noubary, M. Kellner, P. Steinmetz, J. Hötzer, B. Nestler: Comput. Mater. Sci., 138, 403-411 (2017).

    Article  Google Scholar 

  32. A. Lahiri, C. Tiwary, K. Chattopadhyay, and A. Choudhury: Comput. Mater. Sci., 130, 109-120 (2017).

    Article  CAS  Google Scholar 

  33. M. Ignacio and M. Plapp: Phys. Rev. Materials, 3, 113402 (2019).

    Article  CAS  Google Scholar 

  34. Z. Tu, J. Zhou, Y. Zhang, W. Li, and W. Yu: J. Cryst. Growth, 549, 125851 (2020).

    Article  CAS  Google Scholar 

  35. A. Valance, C. Misbah, and D. Temkin: Phys. Rev. E, 48, 1924 (1993).

    Article  CAS  Google Scholar 

  36. K. Kassner and C. Misbah: Phys. Rev. A, 45, 7372-7384 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mathis Plapp for insightful discussions. This work was financially funded by M.Era-net Grant ANPHASES no 187777.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvère Akamatsu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 23 April 2021; accepted 18 July 2021.

Appendices

Appendix A

In this Appendix, we propose a list of the symbols used in the text. In Table II, physical parameters are listed. Table III provides a list of dimensionless variables and symbols.

Table II Physical Variables and Parameters
Table III Dimensionless Variables, Parameters and Symbols

Appendix B

In this Appendix, we were aiming to show useful details related to the anisotropy effect that was simulated in Figures 9 (Figure 11) and 10 (Figure 12) in Section IV–E. We recall that the anisotropic surface energy of the interphase boundary is written in the form of \(\gamma (\theta ) = \gamma _0 [1-a_c(\theta -\theta _R)]\), with \(\theta _R\) setting the angular orientation of the eutectic grain (see Eq. [14]). The model anisotropy function \(a_c\) is taken in the form \(a_c(\theta ) = \epsilon _g \exp \left[ -(\theta /w_g)^2\right] - \epsilon _2\cos 2\theta - \epsilon _4\cos 4\theta \) (see Eq. [15]). The relevant values of the various coefficients are recalled in the captions of Figures 11 and 12 for convenience.

Fig. 11
figure 11

(a) Wulff shape (green line) and \(\gamma \) plot (blue line) of the anisotropy function used for the simulations shown in Fig. 9. The graph is rotated by an angle equal to the relevant \(\theta _R\) value. (b) Tilt angle \(\theta _{sp}\) in the sp approximation for the same anisotropy function. (c) Detail of the experimental microstructure. Red dots: locked (label L) and floating (label F) interphase boundaries. The L and F points are both close to an intersect in the Wulff shape. The arrow (label U) in (a) and (b) designates the unstable branch. Coefficients in the anisotropy function: \(\epsilon _g=0.2\), \(w_g=0.1\), \(\epsilon _2=0.104\), \(\epsilon _4=0.02208\), and \(\theta _R=51^o\). Color online

Fig. 12
figure 12

(a) Wulff shape (green line) and \(\gamma \) plot (blue line) of the anisotropy function used for the simulations shown in Fig. 10. The graph is rotated by an angle equal to the relevant \(\theta _R\) value. (b) Tilt angle \(\theta _{sp}\) in the sp approximation for the same anisotropy function. (c) Details of the experimental microstructure. Red dots: locked (label L) and floating (label F) interphase boundaries. The arrow (label U) in (a) and (b) designates the unstable branch. Coefficients in the anisotropy function: \(\epsilon _g=0.2\), \(w_g=0.005\), \(\epsilon _2=0.2\), \(\epsilon _4=0.06\), and \(\theta _R=35.0^o\). Color online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akamatsu, S., Bottin-Rousseau, S. Numerical Simulations of Locked Lamellar Eutectic Growth Patterns. Metall Mater Trans A 52, 4533–4545 (2021). https://doi.org/10.1007/s11661-021-06407-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06407-1

Navigation