Skip to main content
Log in

The Evolution of Oxygen-Based Inclusions in an Additively Manufactured Super-Duplex Stainless Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Super-duplex stainless steel powder feedstocks specified for use in directed energy deposition additive manufacturing processes can have an oxygen composition nearly five times higher than that present in comparable wrought forms. A combination of computational thermodynamic calculations and experimental validation showed that high levels of oxygen promoted the formation of oxygen-rich inclusions during directed energy deposition additive manufacturing. These inclusions play an important role in microstructural evolution during the rapid heating and cooling cycles prevalent in additive manufacturing and impact mechanical and corrosion properties. Inclusions observed across the powder feedstock and additively manufactured and post-processed materials exhibited complex structures with a combination of amorphous, metastable, and stable phases. The powder feedstock, which experiences rapid cooling rates during the gas atomization process, yielded amorphous inclusions that were rich in manganese, chromium, silicon, and oxygen surrounded by small crystalline MnS particles. After additive manufacturing, inclusions transformed to a combination of rhodonite (MnSiO3) and spinel (MnCr2O4) with amorphous regions around the exterior. Post-process hot isostatic pressing treatments, which replicate conditions most similar to equilibrium, resulted in the formation of a stable spinel oxide with MnS particles around the exterior, matching the results predicted by thermodynamic equilibrium calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Sandvik Osprey (Neath, UK).

  2. Luvak Laboratories (Boylston, US).

  3. Thermo-Calc Software (Solna SE).

  4. IPG Photonics (Oxford, US).

  5. Quintus Technologies AMD Application Center (Columbus, US).

  6. Thermo Fisher Scientific (Waltham, US).

  7. Oxford Instruments (Abingdon, UK).

  8. National Institutes of Health (Bethesda, US).

  9. Bruker Nano GmbH (Berlin, DE).

  10. JEMS-SWISS (Jongny, CH).

References

  1. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.

    Article  CAS  Google Scholar 

  2. T.A. Palmer: Weld. J., 2020, vol. 99, pp. 31–5.

    Google Scholar 

  3. Z.R. Khayat and T.A. Palmer: Mater. Sci. Eng. A, 2018, vol. 718, pp. 123–34.

    Article  CAS  Google Scholar 

  4. J.S. Zuback, P. Moradifar, Z. Khayat, N. Alem, and T.A. Palmer: J. Alloys Compd., 2019, vol. 798, pp. 446–57.

    Article  CAS  Google Scholar 

  5. L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, and P.W. Shindo: J. Mater. Res. Technol., 2012, vol. 1, pp. 167–77.

    Article  CAS  Google Scholar 

  6. S. Cheruvathur, E.A. Lass, and C.E. Campbell: Jom, 2016, vol. 68, pp. 930–42.

    Article  CAS  Google Scholar 

  7. S.D. Meredith, J.S. Zuback, J.S. Keist, and T.A. Palmer: Mater. Sci. Eng. A, 2018, vol. 738, pp. 44–56.

    Article  CAS  Google Scholar 

  8. O. Grinder: Steel Res. Int., 2010, vol. 81, pp. 908–13.

    Article  CAS  Google Scholar 

  9. E. Hryha and L. Nyborg: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1736–47.

    Article  Google Scholar 

  10. ASTM A276, ASTM Int., 2017.

  11. P. Deng, M. Karadge, R.B. Rebak, V.K. Gupta, B.C. Prorok, and X. Lou: Addit. Manuf., 2020, vol. 35, pp. 1–14.

    Google Scholar 

  12. F. Yan, W. Xiong, E. Faierson, and G.B. Olson: Scr. Mater., 2018, vol. 155, pp. 104–8.

    Article  CAS  Google Scholar 

  13. S. Irukuvarghula, H. Hassanin, C. Cayron, M. Aristizabal, M.M. Attallah, and M. Preuss: Acta Mater., 2019, vol. 172, pp. 6–17.

    Article  CAS  Google Scholar 

  14. A.D. Iams, J.S. Keist, and T.A. Palmer: Metall. Mater. Trans. A., 2020, vol. 51, pp. 982–99.

    Article  Google Scholar 

  15. S. Jeon, H. Kim, and Y. Park: Corros. Sci., 2014, vol. 87, pp. 1–5.

    Article  CAS  Google Scholar 

  16. A.J. Cooper, N.I. Cooper, J. Dhers, and A.H. Sherry: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 4467–75.

    Article  Google Scholar 

  17. A.J. Cooper, R.J. Smith, and A.H. Sherry: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2207–21.

    Article  Google Scholar 

  18. X. Lou, P.L. Andresen, and R.B. Rebak: J. Nucl. Mater., 2018, vol. 499, pp. 182–90.

    Article  CAS  Google Scholar 

  19. Y. Hou, J. Zhao, C.Q. Cheng, L. Zhang, J. Li, B.J. Liu, and T.S. Cao: J. Alloys Compd., 2020, vol. 830, p. 154422.

    Article  CAS  Google Scholar 

  20. Y. Zhang, Q. Hu, M. Dai, F. Huang, F.Y. Cheng, and J. Liu: Mater. Corros., 2020, vol. 71, pp. 876–86.

    Article  CAS  Google Scholar 

  21. G. Posch, K. Chladil, and H. Chladil: Weld. World, 2017, vol. 61, pp. 873–82.

    Article  CAS  Google Scholar 

  22. F. Hejripour, F. Binesh, M. Hebel, and D.K. Aidun: J. Mater. Process. Technol., 2019, vol. 272, pp. 58–71.

    Article  CAS  Google Scholar 

  23. X. Zhang, K. Wang, Q. Zhou, J. Ding, S. Ganguly, M. Grasso, D. Yang, X. Xu, P. Dirisu, and S.W. Williams: Mater. Sci. Eng. A, 2019, vol. 762, p. 138097.

    Article  CAS  Google Scholar 

  24. ASTM E1019, ASTM Int., 2018.

  25. ASTM E1097, ASTM Int., 2012.

  26. L. Kaufman and H. Bernstein: Computer Calculation of Phase Diagrams, Springer, New York, 1970.

    Google Scholar 

  27. N. Saunders and A. P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Elsevier, Amsterdam, 1998.

    Google Scholar 

  28. H. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

  29. Z.K. Liu: J. Phase Equilibria Diffus., 2009, vol. 30, pp. 517–34.

    Article  CAS  Google Scholar 

  30. Thermo-Calc Software AB: Thermo-Calc Documentation Set Thermo-Calc Version 2017b, 2017.

  31. P. Yu, M. Yan, D. Tomus, C.A. Brice, C.J. Bettles, B. Muddle, and M. Qian: Mater. Charact., 2018, vol. 143, pp. 43–9.

    Article  CAS  Google Scholar 

  32. T. Maeshima, H. Ikehata, K. Terui, and Y. Sakamoto: Mater. Des., 2016, vol. 103, pp. 106–13.

    Article  CAS  Google Scholar 

  33. D.W. Brown, D.P. Adams, L. Balogh, J.S. Carpenter, B. Clausen, G. King, B. Reedlunn, T.A. Palmer, M.C. Maguire, and S.C. Vogel: Metall. Mater. Trans. A, 2017, vol. 48, pp. 6055–69.

    Article  Google Scholar 

  34. L.A. Giannuzzi and F.A. Stevie: Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice, Springer, 2005.

    Book  Google Scholar 

  35. G. Cliff and G.W. Lorimer: J. Microsc., 1975, vol. 103, pp. 203–7.

    Article  Google Scholar 

  36. C. Mapelli: Rev. Métallurgie, 2003, vol. 100, pp. 65–72.

    Article  CAS  Google Scholar 

  37. H. Narita, K. Koto, and N. Morimoto.: Miner. J., 1977, vol. 8, pp. 329–42.

    Article  CAS  Google Scholar 

  38. X.M. Zhao, J. Xu, X.X. Zhu, S.M. Zhang, W.D. Zhao, and G.L. Yuan: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 83–8.

    Article  CAS  Google Scholar 

  39. P.M. Raccah, R.J. Bouchard, and A. Wold: J. Appl. Phys., 1966, vol. 37, pp. 1436–7.

    Article  CAS  Google Scholar 

  40. T. DebRoy, T. Mukherjee, H.L. Wei, J.W. Elmer, and J.O. Milewski: Nat. Rev. Mater., 2021, vol. 6, pp. 48–68.

    Article  CAS  Google Scholar 

  41. A.I. Zaitsev, A. V. Koldaev, A. V. Amezhnov, and N.G. Shaposhnikov: Metallurgist, 2016, vol. 60, pp. 721–9.

    Article  CAS  Google Scholar 

  42. S.S. Aplesnin, L.I. Ryabinkina, O.B. Romanova, D.A. Velikanov, A.D. Balaev, D.A. Balaev, K.I. Yanushkevich, A.I. Galyas, O.F. Demidenko, and O.N. Bandurina: J. Exp. Theor. Phys., 2008, vol. 106, pp. 765–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. D. Iams acknowledges the support from the American Welding Society Foundation Research Fellowship. The authors acknowledge the Office of Naval Research Manufacturing Technology program and the Applied Research Laboratory’s Institute for Manufacturing and Sustainment Technologies that is funded under the Naval Sea Systems Command (NAVSEA) Contract #N00024-12-D-6404. The authors thank the Center for Innovative Materials Processing through Direct Digital Deposition (CIMP-3D) for the use of their equipment and Mr. Jay Tressler for fabrication of the builds. We also acknowledge Mr. Magnus Ahlfors at Quintus Technologies for performing hot isostatic pressing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Palmer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 25, 2020; accepted April 24, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iams, A.D., Keist, J.S., Giannuzzi, L.A. et al. The Evolution of Oxygen-Based Inclusions in an Additively Manufactured Super-Duplex Stainless Steel. Metall Mater Trans A 52, 3401–3412 (2021). https://doi.org/10.1007/s11661-021-06311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06311-8

Navigation