Skip to main content
Log in

Macro–Micro Scale Modeling and Simulation of Columnar Grain Evolution During Gas Tungsten Arc Welding of Nickel-Based Alloy GH3039

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A cellular automata model combined with the finite element method was developed to simulate the solidification microstructure of nickel-based alloy GH3039 molten pool gotten with gas tungsten arc welding. The macro temperature field simulated with the finite element model was projected into the cellular automata mesh. Based on the meshes, the epitaxial nucleation and competitive growth in the molten pool were carried out. The effects of base metal grain structure and welding conditions on the solidification evolution were investigated. The results show that the width of columnar grain increases as the initial grain size grows. The shape and the thermal distribution of the molten pool vary with the welding conditions. The competitive growth is dominant by the temperature gradient direction, and the grain structures in the weld eventually tended to be perpendicular to the fusion line. The geometry and the microstructures of experimental joints were fully characterized using optical microscopy and electron backscattered diffraction. The simulation results agree well with the corresponding experimental results, validating the accuracy of the current model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. B. Zhao, Z. T. Zheng, Z. L. Wang, J. N. Qi, Y. F. Lei and M. He: J. Eng. Mater. Technol., 2019, vol. 141, pp. 021011.

    Article  CAS  Google Scholar 

  2. J. L. Xie, Y. C. Ma, W. E. Xing, M. Q. Ou, L. Zhang and K. Liu: J. Mater. Sci., 2018, vol. 54, pp. 3558-3571.

    Article  Google Scholar 

  3. X. W. Yan, X. Guo, Y. L. Liu, X. F. Gong, Q. Y. Xu and B. C. Liu: Trans. Nonferrous Met. Soc. China, 2019, vol. 29, pp. 338-348.

    Article  CAS  Google Scholar 

  4. B. Choudhury and M. Chandrasekaran: Mater. Today: Proc., 2017, vol. 4, pp. 7519-7526.

    Article  CAS  Google Scholar 

  5. B. Choudhury and M. Chandrasekaran: Mater. Today: Proc., 2018, vol. 5, pp. 7337-7345.

    Article  CAS  Google Scholar 

  6. S. A. David, S. S. Babu and J. M. Vitek, Jom, 2003, vol. 55, pp. 14-20.

    Article  CAS  Google Scholar 

  7. Q. L. Chu, R. X. Bai, H. G. Jian, Z. K. Lei, N. Hu and C. Yan, Mater. Charact., 2018, vol. 137, pp. 269-276.

    Article  CAS  Google Scholar 

  8. A. Hajitabar and H. Naffakh-Moosavy, Vacuum, 2018, vol. 150, pp. 196-202.

    Article  CAS  Google Scholar 

  9. T. Liu, X. H. Zhan, Y. Q. Zhao, M. Y. Bai and X. R. Gong, Opt. Laser Technol., 2019, vol. 119, p. 105594.

    Article  Google Scholar 

  10. C. Gu, Y. H. Wei, F. Y. Yu, X. B. Liu and L. B. She: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4314-4323.

    Article  Google Scholar 

  11. V. Pavlyk and U. Dilthey: Mater. Sci. Eng., 2004, vol. 12, pp. S33-S45.

    CAS  Google Scholar 

  12. X. H. Zhan, Z. B. Dong, Y. H. Wei and Y. L. Xu: Cryst. Res. Technol., vol. 43, pp. 253-259 (2012).

    Article  Google Scholar 

  13. X. H. Zhan, Z. B. Dong, Y. H. Wei and R. Ma, J: Cryst. Growth, 2009, vol. 311, pp. 4778-4783.

    Article  CAS  Google Scholar 

  14. C. Gu, Y. Wei, X. Zhan and Y. Li: Sci. Technol. Weld. Joining, 2016, vol. 22, pp. 47-58..

    Article  Google Scholar 

  15. W. Tan and YC. Shin: Comput. Mater. Sci., 2015, vol. 98, pp. 446-458.

    Article  CAS  Google Scholar 

  16. R. H. Han, W. C. Dong, S. P. Lu, D. Z. Li and Y. Y. Li: Comput. Mater. Sci., 2014, vol. 95, pp. 351-361.

    Article  CAS  Google Scholar 

  17. R. H. Han, S. P. Lu, W. C. Dong, D. Z. Li and Y. Y. Li: J. Cryst. Growth, 2015, vol. 431, pp. 49-59.

    Article  CAS  Google Scholar 

  18. S. J. Chen, G. Guillemot and C. Gandin: ISIJ Int., 2014, vol. 54, pp. 401-407.

    Article  CAS  Google Scholar 

  19. Z. M. Zhu, P. P. Fu, Z. Y. Yang and J. C. Guo: Chin. J. Eng., 2018, vol. 40, pp. 389-396.

    Google Scholar 

  20. J. Chen, S. H. Li, F. X. Yan and Z. J. Wang: Hot Work. Technol., 2018, vol. 47 pp. 232-239.

    Google Scholar 

  21. L. Nastac: Acta Mater, 1999, vol. 47, pp. 4253-4262.

    Article  CAS  Google Scholar 

  22. X. H. Zhan, Y. H. Wei and Z. B. Dong: J. Mater. Process. Technol., 2008, vol. 208, pp. 1-8.

    Article  Google Scholar 

  23. Z. B. Dong, S. J. Wang, R. Ma, Y. H. Wei, K. J. Song and G. F. Zhai: J. Mater. Sci. Technol., 2011, vol. 27, pp. 183-188.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the financial support of the project from the Fundamental Research Funds for the Central Universities NP2016204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 10, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wei, Y., Qiu, S. et al. Macro–Micro Scale Modeling and Simulation of Columnar Grain Evolution During Gas Tungsten Arc Welding of Nickel-Based Alloy GH3039. Metall Mater Trans A 51, 887–896 (2020). https://doi.org/10.1007/s11661-019-05546-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05546-w

Navigation