Skip to main content
Log in

Microstructure and Texture Evolution During Thermomechanical Processing of Al0.25CoCrFeNi High-Entropy Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructure and texture evolution was studied in a Al0.25CoCrFeNi high-entropy alloy after cold work and subsequent isochronal annealing treatments. The alloy was synthesized by arc-melting and the resulting ingots were cold rolled up to two different thickness reductions: 50 pct and 80 pct. The alloy was then annealed for 1 hour at 973 K, 1073 K, 1173 K, and 1273 K. The final microstructures were analyzed using X-ray diffraction, scanning electron microscopy, and electron backscatter diffraction and the results were correlated with hardness measurements. The sample reduced by 80 pct recrystallized at a lower temperature than the sample reduced by 50 pct, confirming the influence of the deformation degree on the rate of nucleation and growth of new grains. The recrystallized microstructures revealed equiaxed grains with a high density of twins, which is typical of metals with low stacking fault energy. Twins were also observed in the as-rolled samples, suggesting that twinning precedes shear banding during deformation of this alloy. This accounts for the strength of the {110} 〈112〉 brass texture component in the cold rolled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303+274.

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Mater. Sci. Eng. A, 2004, vol. 375–377, pp. 213–8.

    Article  Google Scholar 

  3. G. Laplanche, O. Horst, F. Otto, G. Eggeler, and E.P. George: J. Alloys Compd., 2015, vol. 647, pp. 548–57.

    Article  CAS  Google Scholar 

  4. F. Otto, N.L. Hanold, and E.P. George: Intermetallics, 2014, vol. 54, pp. 39–48.

    Article  CAS  Google Scholar 

  5. K. Liu, M. Komarasamy, B. Gwalani, S. Shukla, and R.S. Mishra: Scr. Mater., 2019, vol. 158, pp. 116–20.

    Article  CAS  Google Scholar 

  6. L.T.H. De Jeer, V. Ocelík, and J.T.M. De Hosson: Microsc. Microanal., 2017, vol. 23, pp. 905–15.

    Article  Google Scholar 

  7. H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, and A. Chiba: Mater. Sci. Eng. A, 2016, vol. 656, pp. 39–46.

    Article  CAS  Google Scholar 

  8. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang: Jom, 2014, vol. 66, pp. 1984–92.

    Article  CAS  Google Scholar 

  9. C.E. Slone, S. Chakraborty, J. Miao, E.P. George, M.J. Mills, and S.R. Niezgoda: Acta Mater., 2018, vol. 158, pp. 38–52.

    Article  CAS  Google Scholar 

  10. D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.

    Article  CAS  Google Scholar 

  11. C. Huang, Y. Zhang, J. Shen, and R. Vilar: Surf. Coatings Technol., 2011, vol. 206, pp. 1389–95.

    Article  CAS  Google Scholar 

  12. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter: Acta Mater., 2015, vol. 96, pp. 258–68.

    Article  CAS  Google Scholar 

  13. K. Zhang and Z. Fu: Intermetallics, 2012, vol. 22, pp. 24–32.

    Article  CAS  Google Scholar 

  14. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Nature, 2016, vol. 534, pp. 227–30.

    Article  CAS  Google Scholar 

  15. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1263–71.

    Article  CAS  Google Scholar 

  16. C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, and H.C. Shih: Corros. Sci., 2008, vol. 50, pp. 2053–60.

    Article  CAS  Google Scholar 

  17. K.Y. Tsai, M.H. Tsai, and J.W. Yeh: Acta Mater., 2013, vol. 61, pp. 4887–97.

    Article  CAS  Google Scholar 

  18. J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, and Y. Liu: J. Alloys Compd., 2018, vol. 760, pp. 15–30.

    Article  CAS  Google Scholar 

  19. C. Ng, S. Guo, J. Luan, S. Shi, and C.T. Liu: Intermetallics, 2012, vol. 31, pp. 165–72.

    Article  Google Scholar 

  20. P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai, and J.W. Yeh: J. Alloys Compd., 2014, vol. 587, pp. 544–52.

    Article  CAS  Google Scholar 

  21. J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, and D. Mark: Mater. Sci. Eng. A, 2015, vol. 633, pp. 184–93.

    Article  CAS  Google Scholar 

  22. Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, and S.J. Lin: J. Alloys Compd., 2011, vol. 509, pp. 1607–14.

    Article  CAS  Google Scholar 

  23. S.G. Ma, P.K. Liaw, M.C. Gao, J.W. Qiao, Z.H. Wang, and Y. Zhang: J. Alloys Compd., 2014, vol. 604, pp. 331–9.

    Article  CAS  Google Scholar 

  24. H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh: Mater. Sci. Eng. B, 2009, vol. 163, pp. 184–89.

    Article  CAS  Google Scholar 

  25. N. Haghdadi, T. Guo, A. Ghaderi, P.D. Hodgson, M.R. Barnett, and D.M. Fabijanic: Wear, 2019, vol. 428–429, pp. 293–301.

    Article  Google Scholar 

  26. M. Annasamy, N. Haghdadi, A. Taylor, P. Hodgson, and D. Fabijanic: Mater. Sci. Eng. A, 2019, vol. 745, pp. 90–106.

    Article  CAS  Google Scholar 

  27. Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw, and B. Yang: Corros. Sci., 2018, vol. 133, pp. 120–31.

    Article  CAS  Google Scholar 

  28. Y. Shi, L. Collins, N. Balke, P.K. Liaw, and B. Yang: Appl. Surf. Sci., 2018, vol. 439, pp. 533–44.

    Article  CAS  Google Scholar 

  29. S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, and L. Vitos: Scr. Mater., 2015, vol. 108, pp. 44–7.

    Article  CAS  Google Scholar 

  30. I.S. Wani, T. Bhattacharjee, S. Sheikh, I.T. Clark, M.H. Park, T. Okawa, S. Guo, P.P. Bhattacharjee, and N. Tsuji: Intermetallics, 2017, vol. 84, pp. 42–51.

    Article  CAS  Google Scholar 

  31. N.D. Stepanov, D.G. Shaysultanov, N.Y. Yurchenko, S. V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, and M.A. Tikhonovsky: Mater. Sci. Eng. A, 2015, vol. 636, pp. 188–95.

    Article  CAS  Google Scholar 

  32. S. Singh, Y. Guo, B. Winiarski, T.L. Burnett, P.J. Withers, and M. De Graef: Sci. Rep., 2018, vol. 8, pp. 1–8.

    Article  Google Scholar 

  33. J. Hou, M. Zhang, S. Ma, P.K. Liaw, Y. Zhang, and J. Qiao: Mater. Sci. Eng. A, 2017, vol. 707, pp. 593–601.

    Article  CAS  Google Scholar 

  34. S. Chen, X. Xie, W. Li, R. Feng, B. Chen, J. Qiao, Y. Ren, Y. Zhang, K.A. Dahmen, and P.K. Liaw: Mater. Chem. Phys., 2017, vol. 210, pp. 20–8.

    Article  Google Scholar 

  35. T. Guo, J. Li, J. Wang, W.Y. Wang, Y. Liu, X. Luo, H. Kou, and E. Beaugnon: Mater. Sci. Eng. A, 2018, vol. 729, pp. 141–8.

    Article  CAS  Google Scholar 

  36. R. Abbaschian and R.E. Reed-Hill: Physical Metallurgy Principles Fourth Edition, Fouth Edit., Stamford, 2008.

    Google Scholar 

  37. U.F. Kocks: in Unified Constitutive Equations for Creep and Plasticity, Springer Netherlands, Dordrecht, 1987, pp. 1–88.

    Book  Google Scholar 

  38. F. Adcock: J Inst Met., 1922, vol. 27, pp. 73–92.

    Google Scholar 

  39. N. Jia, P. Eisenlohr, F. Roters, D. Raabe, and X. Zhao: Acta Mater., 2012, vol. 60, pp. 3415–34.

    Article  CAS  Google Scholar 

  40. Y. Jin, B. Lin, M. Bernacki, G.S. Rohrer, A.D. Rollett, and N. Bozzolo: Mater. Sci. Eng. A, 2014, vol. 597, pp. 295–303.

    Article  CAS  Google Scholar 

  41. H. Paul, J.H. Driver, C. Maurice, and A. Piatkowski: Acta Mater., 2007, vol. 55, pp. 575–88.

    Article  CAS  Google Scholar 

  42. P.G. Callahan and M. De Graef: Microsc. Microanal., 2013, vol. 19, pp. 1255–65.

    Article  CAS  Google Scholar 

  43. S. Singh, F. Ram, and M. De Graef: J. Appl. Crystallogr., 2017, vol. 50, pp. 1664–76.

    Article  CAS  Google Scholar 

  44. Y.H. Chen, S.U. Park, D. Wei, G. Newstadt, M.A. Jackson, J.P. Simmons, M. De Graef, and A.O. Hero: Microsc. Microanal., 2015, vol. 21, pp. 739–52.

    Article  CAS  Google Scholar 

  45. F. Ram, S. Wright, S. Singh, and M. De Graef: Ultramicroscopy, 2017, vol. 181, pp. 17–26.

    Article  CAS  Google Scholar 

  46. K. Marquardt, M. De Graef, S. Singh, H. Marquardt, A. Rosenthal, and S. Koizuimi: Am. Mineral., 2017, vol. 102, pp. 1843–55.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors also acknowledge Professor Junwei Qiao for providing the samples. LAS acknowledges the hospitality of the Department of Materials Science & Engineering at Carnegie Mellon University for a sabbatical visit. SS would like to acknowledge a DoD Vannevar-Bush Faculty Fellowship (# N00014-16-1-2821) and the computational facilities of the Materials Characterization Facility at CMU under Grant # MCF-677785. ADR acknowledges partial support of the Air Force Office of Scientific Research under Grant Number FA9550-16-1-0105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro A. Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 28, 2019.

Appendix

Appendix

Dictionary Indexing (DI) relies on a physics-based forward model to perform accurate quantum mechanical simulation of the electron scattering process.[42] The deterministic Schrödinger’s equation, which produces the characteristic Kikuchi bands is fused with the stochastic inelastically scattered electrons, which form the background. The dynamical signal from elastic scattering modulates the background signal of the inelastically scattered electrons to produce the typical electron backscatter patterns. Unlike the commercial softwares, which rely on the Hough transform feature detection, the DI method performs an exhaustive search of the “pattern dictionary” using the normalized dot product as the similarity metric. The dictionary is just a collection of simulated patterns for identical diffraction geometry but different orientations, which are sampled from a set of uniformly distributed orientations covering the fundamental zone. The orientation of the experimental pattern is labeled the same as the orientation of its closest match in the dictionary.

Once a solution is found, the results are further refined using the forward model. This is necessary to alleviate the artifacts due to the discrete sampling of orientation space in the DI approach. For a well calibrated system, this procedure was shown to produce an orientation accuracy of ~ 0.2 deg for a range of noise in the diffraction pattern.[43] Two samples reduced up to 80 pct presented a heavily deformed microstructure, implying the use of a novel dictionary-based indexing[32,44,45,46] to solve their Kikuchi patterns. The results are shown in Figure A1.

Fig. A1
figure 11

Comparison between IPF maps indexed by OIM-TSL and the new dictionary indexing of the as-rolled (left) and annealed at 973 K (right) samples reduced by 80 pct

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, L.A., Singh, S. & Rollett, A.D. Microstructure and Texture Evolution During Thermomechanical Processing of Al0.25CoCrFeNi High-Entropy Alloy. Metall Mater Trans A 50, 5433–5444 (2019). https://doi.org/10.1007/s11661-019-05399-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05399-3

Navigation