Skip to main content
Log in

Influence of Welding Temperature on Material Flow During Friction Stir Welding of AZ31 Magnesium Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, the effect of welding temperature on material flow during friction stir welding (FSW) of AZ31 magnesium alloy was examined. To this end, FSW was conducted in the temperature range of 0.65-0.85 Tm (Tm is the melting point) and sample-scale EBSD mapping was employed to characterize texture distribution. Despite that the low-temperature welds contained macro-scale defects (which presumably affected material flow), several important observations were made. In the entire temperature range, the global material motion was shown to consist of two principal components, viz. shoulder-induced flow and probe-induced flow. In some cases, however, a synergetic effect of these two constituents resulted in transitional orientation of macro-scale shear plane thus giving rise to a transitional material flow. During low-temperature FSW, the global material transportation was dominated by the probe. However, the contribution of the shoulder and transitional components was found to increase with welding temperature. This effect was attributed to the dominant role of the shoulder in generation of FSW heat. Above ~ 0.8 Tm, however, the transitional material flow was found to abruptly disappear. This result was associated with reduction of temperature sensitivity of flow stresses and the resulting equilibration of their distribution within the stir zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Here and hereafter, a reader is referred to on-line version of this paper to see figures in color.

  2. The textural data shown in these figures were derived from the regions numbered in Figures 5(b) and (c), respectively.

References

  1. R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. R., 2005. Vol. 50A, pp. 1–78

    Article  Google Scholar 

  2. R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia: Progress Mater. Sci., 2008, vol. 53, pp. 980–1023

    Article  Google Scholar 

  3. P.L. Threadgill, A.J. Leonard, H.R. Shercliff and P.J. Withers: Int. Mater. Rev., 2009, vol. 54, pp. 49-93

    Article  Google Scholar 

  4. U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, C.-W. Lee: Acta Mater., 2009, vol. 57, pp. 5406-5418

    Article  Google Scholar 

  5. S. Mironov, Q. Yang, H. Takahashi, I. Takahashi, K. Okamoto, Y.S. Sato, H. Kokawa: Metall. Mater. Trans A., 2010, vol. 41, pp. 1016-1024

    Article  Google Scholar 

  6. R.W. Fonda and K.E. Knipling: Sci. Tech. Weld. Join., 2011, vol. 16, pp. 288-294

    Article  Google Scholar 

  7. P.B. Prangnell, C.P. Heason: Acta Mater., 2005, vol. 53, pp. 3179-3192

    Article  Google Scholar 

  8. R.W. Fonda, J.F. Bingert: Scripta Mater., 2007, vol. 57, pp. 1052-1055

    Article  Google Scholar 

  9. Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan, T. Hashimoto: Metall. Mater. Trans. A, 2001, vol. 32, pp. 941-948

    Article  Google Scholar 

  10. D.P. Field, T.W. Nelson, Y. Hovanski, K.V. Jata: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2869-2877

    Article  Google Scholar 

  11. A.P. Reynolds, E. Hood, W. Tang: Scripta Mater., 2005, vol. 52, pp. 491–494

    Article  Google Scholar 

  12. T.U. Seidel, A.P. Reynolds: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2879-2884

    Article  Google Scholar 

  13. K.N. Krishnan: Mater. Sci. Eng. A, 2002, vol. 327, pp. 246-251

    Article  Google Scholar 

  14. Y. Morisada, T. Imaizumi and H. Fujii: Sci. Technol. Weld. Join., 2015, vol. 20, pp. 130-137

    Article  Google Scholar 

  15. Y. Morisada, T. Imaizumi and H. Fujii: Scripta Mater., 2015, vol. 106 (2015), pp. 57-60

    Article  Google Scholar 

  16. T.U. Seidel, A.P. Reynolds: Sci. Technol. Weld. Join., 2003, vol. 8, pp. 175–183

    Article  Google Scholar 

  17. R. Nandan, G.G. Roy, T.J. Lienert, T. DebRoy: Sci. Technol. Weld Join, 2006, vol. 11, pp. 526–537

    Article  Google Scholar 

  18. H. Schmidt, T.L. Dickerson, J. Hattel: Acta Mater., 2006, vol. 54, pp. 1199–209

    Article  Google Scholar 

  19. M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, A.C. Nunes: Mater. Character., 2002, vol. 49, pp. 95–101

    Article  Google Scholar 

  20. R. Crawford, G. E. Cook, A. M. Strauss, D. A. Hartman and M. A. Stremler: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 657–665

    Article  Google Scholar 

  21. A.P. Reynolds: Sci. Technol. Weld. Join., 2000, vol. 5, pp. 120–124

    Article  Google Scholar 

  22. S. Mironov, T. Onuma, Y.S. Sato, H. Kokawa: Acta Mater., 2015, vol. 100, pp. 301-312

    Article  Google Scholar 

  23. D.P. Field: Ultramicroscopy, 1997, vol. 67, pp. 1-9

    Article  Google Scholar 

  24. S.H.C. Park, Y.S. Sato, and H. Kokawa: Metall. Mater. Trans. A., 2003, vol. 34, pp. 987-994

    Article  Google Scholar 

  25. W. Tang, X. Guo, J.C. McClure, L.E. Murr, A. Nunes: J. Mater. Proc. Manuf. Sci., 1998, vol. 7, pp. 163-172.

    Article  Google Scholar 

  26. I.A. Maksoud, H. Ahmed, J. Rodel: Mater. Sci. Eng. A., 2009, vol. 504, pp. 40–48

    Article  Google Scholar 

  27. J.A. Schneider and A.C. Nunes: Metall Mater. Trans. B, 2004, vol. 35, pp. 777-783

    Article  Google Scholar 

  28. Y. Huang, Y. Wang, L. Wan, H. Liu, J. Shen, J.F. dos Santos, L. Zhou, and J. Feng: Int. J. Adv. Manuf. Technol., 2016, vol. 87, pp. 115-1123

    Article  Google Scholar 

  29. M.M.Z. Ahmed, B.P. Wynne, W.M. Rainforth, A. Addison, J.P. Martin, and P.L. Threadgill: Metall. Mater. Trans. A, 2019, vol. 50, pp. 271-284

    Article  Google Scholar 

  30. Y. Huang, Y. Xie, X. Meng, Z. Lv, J. Cao: J. Mater. Process. Technol., 2018, vol. 252, pp. 233-241

    Article  Google Scholar 

Download references

Conflict of Interest

No potential conflict of interest was reported by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mironov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 4, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, S., Sato, Y.S. & Kokawa, H. Influence of Welding Temperature on Material Flow During Friction Stir Welding of AZ31 Magnesium Alloy. Metall Mater Trans A 50, 2798–2806 (2019). https://doi.org/10.1007/s11661-019-05194-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05194-0

Navigation