Skip to main content
Log in

Microstructure and Wear Properties of Surface Composite Layer Produced by Friction Stir Processing (FSP) in AA2024-T351 Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Friction stir processing (FSP) is applied to create surface metal–matrix composites (SMMCs). This study aims to develop defect-free surface composites on AA2024 aluminum alloy with structural hardening (T351). It focuses on the effect of the number and direction of FSP passes on the particle distribution and microstructural modifications of the processed region, and their relationship with wear behavior of the composite layers. Results confirm that FSP can fabricate an SMMC with an acceptable homogeneous dispersion of particles. An electron backscatter diffraction (EBSD) technique is used to investigate the evolution of the grain size through the different regions of the friction stir-processed (FSPed) samples, indicating a significant grain size reduction in the nugget zone because of dynamic recrystallization. The surface properties are studied by measuring hardness and resistance to sliding wear. Although SMMC hardness at the nugget is similar to the base material, it demonstrates improved wear resistance. Under the sliding conditions of this study, specific wear rate is reduced significantly (between 24 and 40 pct) with respect to the as-received aluminum alloy. Moreover, the worn tracks indicate the same wear mechanisms operating simultaneously in both materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.B. Miracle: Compos. Sci. Technol., 2005, vol. 65, pp. 2526–40.

    Article  Google Scholar 

  2. J.A. Picas, J. Guasch, A. Forn, A. Castaño, E. Ruperez: An. Mecánica La Fract., 2006, vol. 1, pp. 311–6.

    Google Scholar 

  3. C. Hu and T.N.R. Bake: J. Mater. Sci., 2010, vol. 32, pp. 5047–51.

    Article  Google Scholar 

  4. S.-H. Choo, S. Lee, S.-J. Kwon: Metall. Mater. Trans. A., 1999, vol. 30, pp. 3131–41.

    Article  Google Scholar 

  5. M. Gui and S. Bong: Mater. Lett., 2000, 46, 296–302.

    Article  Google Scholar 

  6. A.N. Attia: Mater. Des., 2001, vol. 22, pp. 451–7.

    Article  Google Scholar 

  7. R.S. Mishra, N. Kumar, P. De: Friction Stir Welding and Processing, Springer, London (UK), 2014.

    Book  Google Scholar 

  8. E.R.I. Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi: Wear., 2010, vol. 268, pp. 1111–21.

    Article  Google Scholar 

  9. M. Khorrami, M. Kazeminezhad, A.H. Kokabi: Mater. Sci. Eng. A., 2014, 602, 110–8.

    Article  Google Scholar 

  10. G. Huang, Y. Shen, R. Guo, W. Guan: Mater. Sci. Eng. A., 2016, vol. 674, pp. 504–13.

    Article  Google Scholar 

  11. J. Gandra, P. Vigarinho, D. Pereira, R.M. Miranda, A. Velhinho, P. Vilaça: Mater. Des., 2013, vol. 52, pp. 373–83.

    Article  Google Scholar 

  12. S. Sahraeinejad, H. Izadi, M. Haghshenas: Mater. Sci. Eng. A. 2015, 626, 505–13.

    Article  Google Scholar 

  13. D. Deepak, R.S. Sidhu, V.K. Gupta: Int. J. Mech. Eng., 2013, vol. 3, pp. 1–11.

    Google Scholar 

  14. M.A. Moghaddas and S.F. Kashani-Bozorg: Mater. Sci. Eng. A., 2013, vol. 559, pp. 187–93.

    Article  Google Scholar 

  15. P. Zangabad, F. Khodabakhshi, A. Simchi, A.H. Kokabi: Int. J. Fatigue., 2016, 87, 266–78.

    Article  Google Scholar 

  16. R.. S. Mishra and Z.Y. Ma, I. Charit: Mater. Sci. Eng. A., 2003, vol. 341, pp. 307–310.

    Article  Google Scholar 

  17. S. Soleymani, A. Abdollah-zadeh, S.A. Alidokht: Wear., 2012, vols. 278–9, pp. 41–47.

    Article  Google Scholar 

  18. F. Khodabakhshi, A.P. Gerlich, P. Švec: Mater. Sci. Eng. A., 2017, vol. 698, pp. 313–25.

    Article  Google Scholar 

  19. F. Khodabakhshi, A. Simchi, A.H. Kokabi: Surf. Coatings Technol., 2017, vol. 309, pp. 114–23.

    Article  Google Scholar 

  20. N. Yuvaraj, S. Aravindan, Vipin: J. Mater. Res. Technol., 2015, vol. 4, pp. 398–410.

    Article  Google Scholar 

  21. M. Rahsepar and H. Jarahimoghadam: Mater. Sci. Eng. A.; 2016, vol. 671, pp. 214–220.

    Article  Google Scholar 

  22. M. Ashjari, A. Mostafapour, S. Rouhi: Mater. Sci. Eng. A. 2015, 645, 40–46.

    Article  Google Scholar 

  23. A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A. Zarei-Hanzaki: Mater. Sci. Eng. A., 2009, vol. 500, pp. 84–91.

    Article  Google Scholar 

  24. A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A.Z. Hanzaki: Wear., 2011, vol. 270, pp. 403–12.

    Article  Google Scholar 

  25. R. Dhayalan, K. Kalaiselvan, R. Sathiskumar: Procedia Eng., 2014, vol. 97, pp. 625–31.

    Article  Google Scholar 

  26. M. Narimani, B. Lotfi, Z. Sadeghian: Surf. Coatings Technol., 2016, vol. 285, pp. 1–10.

    Article  Google Scholar 

  27. Z. Du, M.J. Tan, J.F. Guo, G. Bi, J. Wei: Mater. Sci. Eng. A., 2016, vol. 667, pp. 125–31.

    Article  Google Scholar 

  28. H.G. Rana, V.J. Badheka, A. Kumar: Procedia Technol., 2016, vol. 23, pp. 519–28.

    Article  Google Scholar 

  29. A. Devaraju, A. Kumar, A. Kumaraswamy, B. Kotiveerachari: J. Mater. Res. Technol., 2013, vol. 2, pp. 362–69.

    Article  Google Scholar 

  30. K.G. Budinski, M.K. Budinski: Engineering Materials. Properties and Selection. Pearson, New Jersey, 2010, pp. 465-500.

    Google Scholar 

  31. Y. Mazaheri, F. Karimzadeh, M.H. Enayati: J. Mater. Process. Technol., 2011, vol. 211, pp. 1614–19.

    Article  Google Scholar 

  32. J. Gandra, R. Miranda, P. Vilaa, A. Velhinho, J.P. Teixeira: J. Mater. Process. Technol., 2011, vol. 211, pp. 1659–68.

    Article  Google Scholar 

  33. V. Randle: Mater. Charact., 2009, vol. 60, pp. 913–22.

    Article  Google Scholar 

  34. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R Reports., 2005, vol. 50, pp. 1–78.

    Article  Google Scholar 

  35. L.R. Higginson and C.M. Sellars: Work Examples in Quantitative Metallography, Maney Publishing, London UK, 2003.

    Google Scholar 

  36. A. Boag, A.E. Hughes, N.C. Wilson, A. Torpy, C.M. MacRae, A.M. Glenn, T.H. Muster: Corros. Sci., 2009, vol. 51, pp. 1565–68.

    Article  Google Scholar 

  37. A.E. Hughes, A.M. Glenn, N. Wilson, A. Moffatt, A.J. Morton, R.G. Buchheit: Surf. Interface Anal., 2013, vol. 45, pp. 1558–63.

    Article  Google Scholar 

  38. V. Guillaumin and G. Mankowski: Corros. Sci., 1999, vol. 41, pp. 421–38.

    Article  Google Scholar 

  39. V. Randle: Microtexture determination and its applications, Maney publishing, London (UK), 2008.

    Google Scholar 

  40. S. Mironov, Y. Motohashi, R. Kaibyshev, H. Somekawa, T. Mukai, K. Tsuzaki: Mater. Trans., 2009, vol. 50, pp. 610–17.

    Article  Google Scholar 

  41. M. Mahoney, R.S. Mishra, T. Nelson, J. Flintoff, R. Islamgaliev, Y. Hovansky: Friction Stir Welding and Processing, TMS, Warrendale USA, 2001.

    Google Scholar 

  42. P.S. Pao, E. Lee, C.R. Feng, H.N. Jones, D.W. Moon, (Eds.): Friction Stir Welding and Processing II, TMS, Warrendale USA, 2003.

    Google Scholar 

  43. C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-Cottignies: Acta Mater., 2005, vol. 53, pp. 2447–58.

    Article  Google Scholar 

  44. C.Y.H. Lim, S.C. Lim, M. Gupta: Wear., 2003, vol. 255, pp. 629–37.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the Ministry of Economy and Competitiveness under project MAT2014-55415-C3-2-R. Furthermore, the authors wish to express their sincere thanks to the Technological Centre AIMEN for the fabrication of the surface composite layers by FSP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Cristóbal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 25, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acuña, R., Cristóbal, M.J., Abreu, C.M. et al. Microstructure and Wear Properties of Surface Composite Layer Produced by Friction Stir Processing (FSP) in AA2024-T351 Aluminum Alloy. Metall Mater Trans A 50, 2860–2874 (2019). https://doi.org/10.1007/s11661-019-05172-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05172-6

Navigation