Skip to main content
Log in

Lowering Strain Rate Simultaneously Enhances Carbon- and Hydrogen-Induced Mechanical Degradation in an Fe-33Mn-1.1C Steel

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We investigated the strain rate dependency of the hydrogen-induced mechanical degradation of Fe-33Mn-1.1C steel at 303 K within the strain rate range of 10−2 to 10−5 s−1. In the presence of hydrogen, lowering the strain rate monotonically decreased the work hardening rate, elongation, and tensile strength and increased the yield strength. Lowering the strain rate simultaneously enhanced the plasticity-related effects of hydrogen and carbon, leading to the observed degradation of the ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. All chemical contents are provided in weight percentage, unless otherwise noted.

References

  1. R.A. Hadfield. Manganese-steel: I manganese in its application to metallurgy: II some newly-discovered properties of iron and manganese. Institution: Westminster, 1888.

    Google Scholar 

  2. 2. O. Bouaziz, S. Allain, and C. Scott: Scripta Mater., 2008, vol. 58, pp. 484-487.

    Article  Google Scholar 

  3. 3. D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed–Akbari, T. Hickel, F. Roters, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 494-510.

    Article  Google Scholar 

  4. 4. P. Chowdhury, D. Canadinc, and H. Sehitoglu: Mater. Sci. Eng. R, 2017, vol. 122, pp. 1-28.

    Article  Google Scholar 

  5. 5. Y. Dastur and W. Leslie: Metall. Trans. A, 1981, vol.12, pp. 749-759.

    Article  Google Scholar 

  6. 6. S.-J. Lee, J. Kim, S.N. Kane, and B.C. De Cooman: Acta Mater., 2011, vol. 59, pp. 6809-6819.

    Article  Google Scholar 

  7. 7. M. Koyama, E. Akiyama, Y.-K. Lee, D. Raabe, and K. Tsuzaki: Int. J. Hydrogen Energy, 2017, vol. 42, pp. 12706-12723.

    Article  Google Scholar 

  8. 8. M. Koyama, Y. Shimomura, A. Chiba, E. Akiyama, and K. Tsuzaki: Scripta Mater., 2017, vol. 141, pp. 20-23.

    Article  Google Scholar 

  9. 9. I.B. Tuğluca, M. Koyama, B. Bal, D. Canadinc, E. Akiyama, and K. Tsuzaki: Mater. Sci. Eng. A, 2018, vol. 717, pp. 78-84.

    Article  Google Scholar 

  10. 10. B. Bal, M. Koyama, G. Gerstein, H.J. Maier, and K. Tsuzaki: Int. J. Hydrogen Energy, 2016, vol. 41, pp. 15362-15372.

    Article  Google Scholar 

  11. 11. E. Sirois and H.K. Birnbaum: Acta Metall. Mater., 1992, vol. 40, pp. 1377-1385.

    Article  Google Scholar 

  12. 12. A. Kimura and H.K. Birnbaum: Acta Metall., 1988, vol. 36, pp. 757-766.

    Article  Google Scholar 

  13. 13. D. Canadinc, C. Efstathiou, and H. Sehitoglu: Scripta Mater., 2008, vol. 59, pp. 1103-1106.

    Article  Google Scholar 

  14. 14. D.P. Abraham and C.J. Altstetter: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2849-2858.

    Article  Google Scholar 

  15. 15. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191-202.

    Article  Google Scholar 

  16. 16. J. Eastman, F. Heubaum, T. Matsumoto and H.K. Birnbaum: Acta Metall., 1982, vol. 30, pp. 1579-1586.

    Article  Google Scholar 

  17. 17. A.H. Cottrell, Dislocations and plastic flow in crystals, Oxford University Press, New York, 1954.

    Book  Google Scholar 

  18. 21. F. Fabrègue, C. Landron, O. Bouaziz and E. Maire: Mater. Sci. Eng. A, 2013, vol. 579, pp. 92-98.

    Article  Google Scholar 

  19. 22. C.L. Yang, Z.J. Zhang, P. Zhang and Z.F. Zhang: Acta Mater. 2017, vol. 136, pp. 1-10.

    Article  Google Scholar 

  20. 23. H.-Y. Yu, S.-M. Lee, J.-H. Nam, S.-J. Lee, D. Fabrègue, M.-H. Park, N. Tsuji and Y.-K. Lee: Acta Mater., 2017, vol. 131, pp. 435-444.

    Article  Google Scholar 

  21. 24. M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739-2745.

    Article  Google Scholar 

  22. 25. M. Koyama, H. Springer, S.V. Merzlikin, K. Tsuzaki, E. Akiyama and D. Raabe: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 4634-4646.

    Article  Google Scholar 

Download references

This work was financially supported by the Japan Science and Technology Agency (JST) (Grant No.: 20100113) under Industry-Academia Collaborative R&D Program “Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials” and JSPS KAKENHI (JP16H06365 and JP17H04956). B. Bal acknowledges the financial support by the AGU-BAP under Grant Number: FAB-2017-77.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motomichi Koyama.

Additional information

Manuscript submitted May 25, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuğluca, I.B., Koyama, M., Shimomura, Y. et al. Lowering Strain Rate Simultaneously Enhances Carbon- and Hydrogen-Induced Mechanical Degradation in an Fe-33Mn-1.1C Steel. Metall Mater Trans A 50, 1137–1141 (2019). https://doi.org/10.1007/s11661-018-5080-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5080-7

Navigation