Skip to main content
Log in

Tunable Corrosion Behavior of Calcium Phosphate Coated Fe-Mn-Si Alloys for Bone Implant Applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work deals with the electrodeposition of calcium phosphate coatings on the surface of Fe-Mn-Si alloys which is designed for bone implant applications. Three different alloy compositions are considered (Fe-23Mn-5Si, Fe-26Mn-5Si and Fe-30Mn-5Si, all in wt pct). In order to explore the impact of hydrogen peroxide (H2O2) on the electrodeposition process, two different electrolytic solutions are studied, one that contains no H2O2 and the other that contains 9 vol pct H2O2. The physicochemical characterizations reveal that the electrodeposited coating is made of an apatite phase of low crystallinity with less porosity when hydrogen peroxide is added to the electrolyte solution. The corrosion measurements of the uncoated and coated alloys are also carried out during immersion in Hank’s solution at 310 K (37 °C), a physiological solution that simulates the inorganic composition of the body fluids. Interestingly, it was found that the manganese content in the alloy and the porosity of the coating both modify the corrosion behavior, i.e., the biodegradability of the Fe-Mn-Si alloy immersed in the physiological environment. Hence, the corrosion behavior of the calcium phosphate-coated Fe-Mn-Si alloys is tunable as a function of the experimental parameters used during the synthesis of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. [1] Y.F. Zheng, X.N. Gu, and F. Witte: Mater. Sci. Eng. R, 2014, vol. 77, pp. 1-34.

    Article  Google Scholar 

  2. [2] H. Li, Y. Zheng, and L. Qin: Prog. Nat. Sci., 2014, vol. 24, pp. 414-22.

    Article  CAS  Google Scholar 

  3. [3] M. Niinomi: Metall. Mater. Trans. A, 2002, vol. 33, pp. 477-86.

    Article  Google Scholar 

  4. [4] H. Hermawan, D. Dubé, and D. Mantovani: Acta Biomater., 2010, vol. 6, pp. 1693-7.

    Article  CAS  Google Scholar 

  5. [5] M. Schinhammer, A.C. Hänzi, J.F. Löffler, and P.J. Uggowitzer: Acta Biomater., 2010, vol. 6, pp. 1705-13.

    Article  CAS  Google Scholar 

  6. [6] A. Francis, Y. Yang, S. Virtanen, and A.R. Boccaccini: J. Mater. Sci., 2015, vol. 26, pp. 138-53.

    CAS  Google Scholar 

  7. [7] C.H. Yang, H.C. Lin, K.M. Lin, and H.K. Tsai: Mater. Sc. Eng. A, 2008, vol. 497, pp. 445-50.

    Article  Google Scholar 

  8. [8] R. Drevet, Y. Zhukova, P. Malikova, S Dubinskiy, A. Korotitskiy, Y. Pustov, and S. Prokoshkin: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1006-13.

    Article  Google Scholar 

  9. [9] T. Niendorf, F. Brenne, P. Hoyer, D. Schwarze, M. Schaper, R. Grothe, M. Wiesener, G. Grundmeier, and H.J. Maier: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2829-33.

    Article  Google Scholar 

  10. [10] F. Witte: Acta Biomater., 2010, 6, pp. 1680-92.

    Article  CAS  Google Scholar 

  11. [11] Y. Chen, Z. Xu, C. Smith, and J. Sankar: Acta Biomater., 2014, vol. 10, pp. 4561-73.

    Article  CAS  Google Scholar 

  12. [12] H. Hermawan, D. Dubé, and D. Mantovani: J. Biomed. Mater. Res., 2010, vol. 93A, pp. 1-11.

    CAS  Google Scholar 

  13. [13] M. Kaya and O. Cakmak: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1499-503.

    Article  Google Scholar 

  14. [14] Y.P. Feng, N. Gaztelumendi, J. Fornell, H.Y. Zhang, P. Solsona, M.D. Baró, S. Suriñach, E. Ibáñez, L. Barrios, E. Pellicer, C. Nogués, and J. Sort: J. Alloy. Compd, 2017, vol. 724, pp. 1046-56.

    Article  CAS  Google Scholar 

  15. [15] Y.P. Feng, A. Blanquer, J. Fornell, H. Zhang, P. Solsona, M.D. Baró, S. Suriñach, E. Ibáñez, E. García-Lecina, X. Wei, R. Li, L. Barrios, E. Pellicer, C. Nogués, and J. Sort: J. Mater. Chem. B, 2016, vol. 4, pp. 6402-12.

    Article  CAS  Google Scholar 

  16. [16] S.R. Paital, and N.B. Dahotre: Mater. Sci. Eng. R, 2009, vol. 66, pp. 1-70.

    Article  Google Scholar 

  17. [17] S.V. Dorozhkin: Mater. Sci. Eng. C, 2015, vol. 55, pp. 272-326.

    Article  CAS  Google Scholar 

  18. [18] R.A. Surmenev, M.A. Surmeneva, and A.A. Ivanova: Acta Biomater., 2014, vol. 10, pp. 557-79.

    Article  CAS  Google Scholar 

  19. [19] R.B. Heimann: Surf. Coat. Technol., 2006, vol. 201, pp. 2012-9.

    Article  CAS  Google Scholar 

  20. [20] C. Domínguez-Trujillo, E. Peón, E. Chicardi, H. Pérez, J.A. Rodríguez-Ortiz, J.J. Pavón, J. García-Couce, J.C. Galván, F. García-Moreno, and Y. Torres: Surf. Coat. Technol., 2018, vol. 333, pp. 158-62.

    Article  Google Scholar 

  21. [21] R.A. Ismail, E.T. Salim, and W.K. Hamoudi: Mater. Sci. Eng. C, 2013, vol. 33, pp. 47-52.

    Article  CAS  Google Scholar 

  22. [22] M. Farrokhi-Rad: Surf. Coat. Technol., 2017, vol. 329, pp. 155-62.

    Article  CAS  Google Scholar 

  23. [23] M. Ibrahim Coskun, I.H. Karahan, Y. Yücel, and T.D. Golden: Surf. Coat. Technol., 2016, vol. 301, pp. 42-53.

    Article  CAS  Google Scholar 

  24. [24] J.Fornell, Y.P.Feng, E.Pellicer, S.Suriñach, M.D.Baró, and J.Sort: J. Alloy. Compd., 2017, vol. 729, pp. 231-9.

    Article  CAS  Google Scholar 

  25. [25] R. Drevet, H. Benhayoune, L. Wortham, S. Potiron, J. Douglade, and D. Laurent-Maquin: Mater. Charact., 2010, vol. 61, pp. 786-95.

    Article  CAS  Google Scholar 

  26. [26] F.A. Azem, T.K. Delice, G. Ungan, and A. Cakir: Mater. Sci. Eng. C, 2016, vol. 68, pp. 681-6.

    Article  CAS  Google Scholar 

  27. R. Drevet and H. Benhayoune: Calcium Phosphate: Structure, Synthesis, Properties, and Applications, R.B. Heimann (Eds.), Nova Science Publishers Inc, New York, 2012, pp. 231-52.

    Google Scholar 

  28. [28] M.C. Kuo, and S.K. Yen: Mater. Sci. Eng. C, 2002, vol. 20, pp. 153-60.

    Article  Google Scholar 

  29. [29] N. Eliaz, and T.M. Sridh: Cryst. Growth Des., 2008, vol. 8, pp. 3965-77.

    Article  CAS  Google Scholar 

  30. [30] J.M. Zhang, C.J. Lin, Z.D. Feng, and Z.W. Tian: J. Electroanal. Chem., 1998, vol. 452, pp. 235-40.

    Article  CAS  Google Scholar 

  31. [31] E.A. Abdel-Aal, D. Dietrich, S. Steinhaeuser, and B. Wielage: Surf. Coat. Technol., 2008, vol. 202, pp. 5895-900.

    Article  CAS  Google Scholar 

  32. [32] N. Dumelié, H. Benhayoune, C. Rousse-Bertrand, S. Bouthors, A. Perchet, L. Wortham, J. Douglade, D. Laurent-Maquin, and G. Balossier: Thin Solid Films, 2005, vol. 492, pp. 131-9.

    Article  Google Scholar 

  33. [33] I. Zhitomirsky: Adv. Colloid Interface Sci, 2002, vol. 97, pp. 279-317.

    Article  CAS  Google Scholar 

  34. [34] N. Eliaz and M. Eliyahu: J. Biomed. Mater. Res. A, 2007, vol. 80, pp. 621-34.

    Article  Google Scholar 

  35. [35] R. Drevet, A. Viteaux, J. C. Maurin, and H. Benhayoune: RSC Adv., 2013, vol. 3, pp. 11148-54.

    Article  CAS  Google Scholar 

  36. [36] S. Stanciu, A. Ursanu, L.C. Trinca, T.A. Elena, S. Carmen, C. Munteanu, N. Cimpoesu, D. Acatrinei, E.V. Sindilar, T. Stanciu, M. Fantanariu, and L. Topliceanu: Environ. Eng. Manag. J., 2016, vol. 15, pp. 973-80.

    Article  CAS  Google Scholar 

  37. [37] R.I.M. Asri, W.S.W. Harun, M. Samykano, N.A.C. Lah, S.A.C. Ghani, F. Tarlochan, and M.R. Raza: Mater. Sci. Eng. C, 2017, vol. 77, pp. 1261-74.

    Article  CAS  Google Scholar 

  38. [38] U. Kamachimudali, T.M. Sridhar, and B. Raj: Sadhana-Acad. Proc. Eng. Sci., 2003, vol. 28, pp. 601-37.

    Google Scholar 

  39. [39] R. Singh, and N.B. Dahotre: J. Mater. Sci. Mater. Med., 2007, vol. 18, pp. 725-51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation, in the framework of the Increase Competitiveness Program of NUST “MISIS” (Grant No. К4-2016-57). The authors thank Dr. E. Bazanova, NUST “MISiS” Director of Academic Writing Office, and Dr. M.F. Ijaz for their critical reading of the manuscript and some helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Drevet.

Additional information

Manuscript submitted April 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drevet, R., Zhukova, Y., Kadirov, P. et al. Tunable Corrosion Behavior of Calcium Phosphate Coated Fe-Mn-Si Alloys for Bone Implant Applications. Metall Mater Trans A 49, 6553–6560 (2018). https://doi.org/10.1007/s11661-018-4907-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4907-6

Navigation