Skip to main content

Advertisement

Log in

Chemistry and Properties of Medium-Mn Two-Stage TRIP Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Eight medium manganese steels ranging from 10 to 15 wt pct Mn have been produced with varying levels of aluminum, silicon, and carbon to create steels with varying TRIP (transformation-induced plasticity) character. Alloy chemistries were formulated to produce a range of intrinsic stacking fault energies (ISFE) from − 2.2 to 13.3 mJ/m2 when calculated at room temperature for an austenitic microstructure having the nominal alloy composition. Two-stage TRIP behavior was documented when the ISFE of the γ-austenite phase was 10.5 mJ/m2 or less, whereas an ISFE of 11.9 mJ/m2 or greater exhibited TWIP (twin-induced plasticity) with single-stage TRIP to form α-martensite. Properties were measured in both hot band (hot rolled) and batch annealed (hot rolled, cold rolled, and annealed) conditions. Hot band properties were influenced by the Si/Al ratio and this dependence was related to incomplete recovery during hot working for alloys with Si/Al ratios greater than one. Batch annealing was conducted at 873 K (600 °C) for 20 hours to produce ultrafine-grained microstructures with mean free slip distances less than 1 μm. Batch-annealed materials were found to exhibit a Hall–Petch dependence of the yield strength upon the mean free slip distance measured in the polyphase microstructure. Ultimate tensile strengths ranged from 1450 to 1060 MPa with total elongations of 27 to 43 pct. Tensile ductility was shown to be proportional to the sum of the products of volume fraction transformed times the volume change associated for each martensitic transformation. An empirical relationship based upon the nominal chemistry was derived for the ultimate tensile strength and elongation to failure for these batch-annealed steels. Two additional alloys were produced based upon the developed understanding of these two-stage TRIP steels and tensile strengths of 1150 MPa with 58 pct total elongation and 1400 MPa and 32 pct ductility were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Q. Li, X. Huang, and W. Huang: Met Sci. Eng., 2016, vol. 662, pp. 129-35.

    Article  Google Scholar 

  2. E.J. Seo, L. C, Y. Estrin, and B.C. De Cooman: Acta Mater., 2016, vol. 113, pp. 124-39

    Article  Google Scholar 

  3. L. Cho, E.J. Seo, and B.C. De Cooman: Scripta Materialia, 2016, vol. 123, pp. 69-72

    Article  Google Scholar 

  4. T. Tschiyama, T. Inoe, J. Tobata, D. Akami, and S. Takaki: Scripta Mat. 2016, vol. 122, pp. 36-39

    Article  Google Scholar 

  5. D.-W. Suh, S.-J. Park, T.-H. Lee, C.-S. Oh, and S.-J. Kim: Met Trans A, 2010, vol. 41A, pp. 397–408

  6. D.-W. Suh, J.-H. Ryu, M.-S. Joo, H.-S. Yang, H.K.D.H. Bhadeshia: Met Trans A, 2013, vol. 44A, pp. 286–93

  7. J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao: Scripta Mat, 2010, vol. 63, pp. 815-18

    Article  Google Scholar 

  8. Z.H. Cai, H. Ding, R.D.Misra, and Z.Y. Ying: Acta Materialia, 2015, vol. 84, pp. 229-36

    Article  Google Scholar 

  9. R. Zhang, W.Q. Ca, Z.J. Peng, J. Shi, H. Dong, and C.X. Huang: Mater. Sci. & Eng. A, 2013, vol. 583, pp. 84-88

    Article  Google Scholar 

  10. R. Skolly, ArcelorMittal personal communication.

  11. Y. Zhang, L. Wang, K. O. Findley, and J. Speer: Met Trans. A, 2017, vol. 48A, pp. 2140-49

    Article  Google Scholar 

  12. H. Luo, H. Dong, and M. Huang: Mater. & Design, 2015, vol. 83, pp.42-48

    Article  Google Scholar 

  13. S. Lee, W. Woo, and B.C. De Cooman: Met. Trans A, 2016, vol. 47A, pp. 2125-40

    Article  Google Scholar 

  14. G. Frommeyer, U. Brux, and P. Neumann: ISJ Inter. 2003, vol. 43, pp. 438-46

    Article  Google Scholar 

  15. L. Remy, and A. Pineau: Mater. Sci and Eng. 1976, vol. 26 pp. 123-32

    Article  Google Scholar 

  16. S. Allain, J.P. Chateau, and O. Bouaziz: Mater Sci and Eng. 2004, vol. 387, pp. 143-47

    Article  Google Scholar 

  17. T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, and S.J. Kim: Acta Mater. 2010, vol. 58, 3173-86

    Article  Google Scholar 

  18. H. Song, S.S. Sohn, J-H Kwak, B-J lee, and S. Lee: Met Trans A, 2016, vol. 47A, pp.2674-85

    Article  Google Scholar 

  19. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: International Journal of Plasticity, 2000, vol. 16, pp. 1391-1409

    Article  Google Scholar 

  20. B.C. De Cooman, P. Gibbs, S. Lee, and D.K. Matlock: Met Trans A, 2013, vol. 44A, pp. 2563-72

    Article  Google Scholar 

  21. D.M. Field and D.C. Van Aken: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1152–66

    Article  Google Scholar 

  22. S.T. Pisarik, D.C. Van Aken, K. Limmer, and J.E. Medvedeva: AISTech 2014 Proceedings, 2014, vol. III, pp. 3013–23

  23. S.K. Huang, Y.H. Wen, N.Li, J.Teng, S.Ding, Y.G. Xu: Mater Characterization vol.59, 2008, pp.681-87

    Article  Google Scholar 

  24. S. Shin, M. Kwon, W. Cho, I. S. Suh, and B.C. De Cooman: Mater. Sci. & Eng. 2017, vol. 683, pp. 187-94

    Article  Google Scholar 

  25. M.C. McGrath, D.C. Van Aken, N.I. Medvedeva, and J.E. Medvedeva: Metall. Mater. Trans. A, Vol. 44A, 2013, pp. 4634-43.

    Article  Google Scholar 

  26. X.-S. Yang, S. Sun, H.-H. Ruan, S.-Q. Shi, and T.-Y. Zhang: Acta Mater., 2017, vol. 136, pp. 347–54

  27. D.C. Van Aken, S.T. Pisarik, and M.C. McGrath: Proceedings of the International Symposium on New Developments in Advanced High-Strength Steels, Vail, Colorado, 2013, pp. 119–29.

  28. D. M. Field, and D.C. Van Aken: Met Trans A., (2016) Vol. 47A pp.1912-17

    Article  Google Scholar 

  29. N.I. Medvedeva, M.S. Park, D.C. Van Aken, and J.E. Medvedeva: J. Alloys Compd., Vol. 582, 2014, pp. 475–82

  30. K.R. Limmer, J.E. Medvedeva, D.C. Van Aken and N.I. Medvedeva: Comput. Mater. Sci., 2015, vol. 99, pp. 253–55

    Article  Google Scholar 

  31. S.T. Pisarik and D.C. Van Aken: Met Trans A., Vol. 47A 2016 pp1009-1018

    Article  Google Scholar 

  32. D.M. Field, D.S. Baker, and D.C. Van Aken: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2150–63

    Article  Google Scholar 

  33. P.P. Suikkanen, V.T.E. Lang, M.C.Somani, D.A. Prter, and L.P. Karjalainen: ISIJ International, 2012, vol. 52, pp. 471-76

    Article  Google Scholar 

  34. Z, Li-Juan, W. Di, and Z. Xian-ming: Jour. Iron and Steel research international, 2007, vol. 14, pp. 61-65

    Google Scholar 

  35. L.J. Zhu, D. Wu, X.M. Zhao: Acta Metall. 2008 vol. 21, pp. 163-68

    Article  Google Scholar 

  36. M.C. Somani, L.P. Karjalainenm, D.A. Porter, and R.A. Morgridge: Proceedings of International Conference on Thermomechanical Processing Mechanics: Microstructures and Controls, University of Sheffield, Sheffield GB, (2003), 436.

  37. S.F. Medina, and J. E. Mancilla: ISIJ Int. 1996, vol. 36, pp.1036-1070

    Article  Google Scholar 

  38. S.F. Medina, and A. Quispe: ISIJ Int. 2001, vol. 41, pp.774-80

    Article  Google Scholar 

  39. S-J. Lee, J. Kim, S.N. Kane, and B.C. De Cooman: Acta Materialia, 2011, vol. 59, pp.6809-19

    Article  Google Scholar 

  40. S.J. Lee, S.W. Lee, B.C. De Cooman: Int. J. Mater. Res., 2013, vol. 104, pp. 423–29.

    Article  Google Scholar 

  41. G.B. Olson, M. Cohen: Met Trans A Vol 7 1976 pp. 1897-1904

    Google Scholar 

  42. ASTM E 8/E 8M-08, Standard Test Methods for Tension Testing of Metallic Materials

  43. S. Martin, C. Ullrich, D. Simek, U. Martin, and D. Rafaja: J. Appl. Crystallogr., 2011, vol. 44, pp. 779-87

    Article  Google Scholar 

  44. N. Stanford and D.P. Dunne: Acta Materialia, 2010, Vol. 58, pp.6752-62

    Article  Google Scholar 

  45. S. T. Pisarik, and D. C. Van Aken: Met Trans A., 2014, vol. 45, pp. 3173-78

    Article  Google Scholar 

  46. M. Papa Rao, V. Subramanya Sarma, and S. Sankaran: Met. Trans. A 2014, vol 45A pp. 5313–17

  47. M. Papa Rao, V. Subramanya Sarma, and S. Sankaran: Mater. Sci. & Eng. A 2013, vol. 568 pp. 171–75

  48. O. Saray, G. Purcek, I. Karaman, H. Maier: Met Trans A 2012, vol. 43A. 4320–30

    Article  Google Scholar 

  49. V.S.A. Challa, R.D.K. Misra, M.C. Comani and Z.D. Wang: Mater. Sci. & Eng 2016 vol. 661 pp.51–60

    Article  Google Scholar 

  50. Y. Son, Y.K. Lee, K.-T. Park, C. S. Lee, and D. H. Shin: Acta Mater. 2005, vol. 53, pp. 3125–34

  51. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Meter. 2011, vol. 59 pp. 658–70

  52. D. H. Shin, and K-T. Park: Mater. Sci. & Eng. A 2005, vol. 410-411, pp. 299-302

    Article  Google Scholar 

  53. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. & Eng. A 2010 vol. 527, pp. 2738-46

    Article  Google Scholar 

  54. R.D.K. Misra, P.K.C. Vankatsurya, M.C. Somani, and L.P. Karjalinen: Met Trans A, 2012, vol. 43A, pp. 5286-97

    Article  Google Scholar 

  55. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Met Trans A, 2011, vol. 42A, pp. 3691-3701

    Article  Google Scholar 

  56. G. Dini, A. Najafizadeh, R. Ueji, and S.M. Monir-Vaghefi: Materials Letters, 2010, vol. 64, pp. 15-18

    Article  Google Scholar 

  57. S. Rajasekhara, P.J. Ferreira, L.P. Karjalainenm and A. Kyröläinen: Met Trans A. 2007, vol. 38A, pp. 1202–1210

    Article  Google Scholar 

  58. A. Rohatgi, K.S., Vecchio, and G.T. Gray III: Met. Trans. A, 2001, vol. 32A, pp. 135–45

  59. D.J. Branagan, C.S. Parsons, T.V. Machrowicz, A.E. Frerichs, B.E. Meacham, S. Cheng, and A.V. Sergueeva 2016, Launch of a New Class of 3 rd Generation Cold Formable AHSS [PowerPoint slide 15 & 16]

Download references

Acknowledgments

This work was supported by the Peaslee Steel Manufacturing Research Center (PSMRC). Companies directly involved in this work include AK Steel, ArcelorMittal, Nucor Steel, and U. S. Steel. The FEI Helios NanoLab dual beam FIB was obtained with a Major Research Instrumentation Grant from the National Science Foundation under Contract DMR-0723128. The FEI Tecnai F20 scanning/transmission electron microscope was obtained through a major research instrumentation Grant from the National Science Foundation under Contract DMR-0922851. The authors also acknowledge the support of the Materials Research Center and in particular Dr. Clarissa Wisner for training on the SEM as well as Dr. Eric Bohannan for performing the XRD work. Special thanks are also extended to Dr. Narayan Pottore and Dr. Bernard Chukwulebe at ArcelorMittal, Todd Link from U.S. Steel, Eric Gallo at Nucor, and Dr. Luis Garza from AK Steel for their discussion and guidance on the engineering requirements for future 3rd generation advanced high-strength steels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Field.

Additional information

Manuscript submitted date January 16, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Field, D.M., Qing, J. & Van Aken, D.C. Chemistry and Properties of Medium-Mn Two-Stage TRIP Steels. Metall Mater Trans A 49, 4615–4632 (2018). https://doi.org/10.1007/s11661-018-4798-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4798-6

Navigation