Skip to main content
Log in

Sintering Response and Equiaxed α-Ti Grain Formation in the Ti Alloys Sintered from Ti@Ni Core–Shell Powders

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Using Ti@Ni core–shell powder is in favor of enhancing the sintering densification, obtaining the linear shrinkage response, forming equiaxed α-Ti grain, and reducing the oxygen contamination, compared to the elemental powder mixtures. The enhanced sintering densification is responsible for the improved tensile strength, while a combination of the equiaxed α-Ti grain formation, the low oxygen increment, and the reduced porosity content noticeably doubled the tensile ductility. The linear shrinkage response is good for accurately controlling the dimension of the sintered parts. All of the improved issues are largely attributed to the unique dissolution phenomenon of Ni from Ti@Ni core–shell powder. The detailed mechanism will be discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.A. Zhang, C.M. Wang, Y.G. Zhang, Y.H Wei, S.F. Xiao, and Y.G. Chen: Mater. Manuf. Processes, 2018, vol. 33, pp.849-55.

    Article  Google Scholar 

  2. X.X. Ye, B. Chen, J.H. Shen, J. Umeda, and K. Kondoh: J. Alloys Compd., 2017, vol. 709, pp. 381-93.

    Article  Google Scholar 

  3. S.J. Gerdemann and P.D. Jablonski: Metall. Mat. Trans. A, 2011, vol. 42, pp. 1325-33.

    Article  Google Scholar 

  4. S. Luo, Y. Yang, G. Schaffer, and M. Qian: J. Mater. Process. Tech., 2014, vol. 214, pp. 660-6.

    Article  Google Scholar 

  5. M. Qian: Int. J. Powder Metall., 2010, vol. 46, pp. 29-44.

    Google Scholar 

  6. M. Qian and F.H. Froes: Titanium Powder Metallurgy: Past, Current and Future, 1st ed. Elsevier Inc., Amsterdam, 2015.

    Google Scholar 

  7. Y.F. Yang, S.D. Luo, G.B. Schaffer, and M. Qian: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7381-87.

    Article  Google Scholar 

  8. B.B. Panigrahi: Mater. Lett., 2007, vol. 61, pp. 152-55.

    Article  Google Scholar 

  9. I.M. Robertson and G.B. Schaffer: Powder Metall., 2009, vol. 52, pp. 316-21.

    Article  Google Scholar 

  10. I. M. Robertson and G. B. Schaffer: Powder Metall., 2009, vol. 52, pp. 213-24.

    Article  Google Scholar 

  11. G. Chen, K.D. Liss, and P. Cao: Acta Mater., 2014, vol. 67, pp. 32-44.

    Article  Google Scholar 

  12. O.M. Ferri, T. Ebel, and R. Bormann: Adv. Eng. Mat., 2011, vol. 13, pp. 436-47.

    Article  Google Scholar 

  13. S.D. Luo, Y.F. Yang, G.B. Schaffer, and M. Qian: J. Alloys Compd., 2013, vol. 555, pp. 339-46.

    Article  Google Scholar 

  14. H.W. Liu, D.P. Bishop, and K.P. Plucknett: Mater. Sci. Eng. A, 2015, vol. 644, pp. 392-404.

    Article  Google Scholar 

  15. R.J. Low, I.M. Robertson, and G.B. Schaffer: Scr. Mater., 2007, vol. 56, pp. 895-8.

    Article  Google Scholar 

  16. L.F. Hu, Y.Z. Xue, and F.R. Shi: Mater. Des., 2017, vol. 130, pp. 175-82.

    Article  Google Scholar 

  17. I.M. Robertson and G.B. Schaffer: Powder Metall., 2009, vol. 52, pp. 225-32.

    Article  Google Scholar 

  18. R. Thyarajan, G.M.D. Cantin, B.P. Kashyap, and C.J. Bettles: Powder Technol., 2015, vol. 274, pp. 53-61.

    Article  Google Scholar 

  19. N. Barbat and K. Zangeneh-Madar: Powder Metall., 2014, vol. 57, pp. 97-102.

    Article  Google Scholar 

  20. J.H. Chen, S.B. Ren, X.B. He, and X.H. Qu: Carbon, 2017, vol. 121, pp. 25-34.

    Article  Google Scholar 

  21. J.L. Song, W.G. Chen, L.L. Dong, J.J. Wang, and N. Deng: J. Alloys Compd., 2017, vol. 720, pp. 54-62.

    Article  Google Scholar 

  22. M.J. Donachie: Titanium, A Technical Guide, 2nd ed., ASM International, Metals Park, OH, 2000, pp. 13-24.

    Google Scholar 

  23. R.R. Boyer and G.W. Kuhlman: Metall. Mat. Trans. A, 1987, vol. 18, pp. 2095-2103.

    Article  Google Scholar 

  24. Y. Yue, L.Y. Dai, H. Zhong, C.L. Tan, M.Z. Ma, X.Y Zhang, and R.P. Liu: Mater. Sci. Eng., A, 2016, vol. 678, pp. 286-90.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Key Research Program of Frontier Sciences (Grant No. QYZDB-SSW-JSC045), Chinese Academy of Sciences, and National Youth Thousand Plan Program. This work was also financially supported by the National Natural Science Foundation of China (51602313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Yang.

Additional information

Manuscript submitted March 22, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Li, S.F., Yang, Y.F. et al. Sintering Response and Equiaxed α-Ti Grain Formation in the Ti Alloys Sintered from Ti@Ni Core–Shell Powders. Metall Mater Trans A 49, 3394–3401 (2018). https://doi.org/10.1007/s11661-018-4698-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4698-9

Navigation