Skip to main content
Log in

Prenucleation Induced by Crystalline Substrates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Prenucleation refers to the phenomenon of atomic ordering in the liquid adjacent to the substrate/liquid interface at temperatures above the liquidus. In this paper, we have systematically investigated and holistically quantified the prenucleation phenomenon as a function of temperature and the lattice misfit between the substrate and the solid, using molecular dynamics (MD) simulations. Our results have confirmed that at temperatures above the liquidus, the atoms in the liquid at the interface may exhibit pronounced atomic ordering, manifested by atomic layering normal to the interface, in-plane atomic ordering parallel to the interface, and the formation of a 2-dimensional (2D) ordered structure (a few atomic layers in thickness) on the substrate surface. Holistic quantification of such atomic ordering at the interface has revealed that the atomic layering is independent of lattice misfit and is only slightly enhanced by reducing temperature while both in-plane atomic ordering and the formation of the 2D ordered structure are significantly enhanced by reducing the lattice misfit and/or temperature. This substrate-induced atomic ordering in the liquid may have a significant influence on the subsequent heterogeneous nucleation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.F. Kelton and A.L. Greer: Nucleation in condensed matter: Applications in materials and biology, Pergamon, Oxford, 2010.

    Google Scholar 

  2. Z. Fan: Mater. Trans. A, 2013, vol. 44, pp. 1409-18.

    Article  Google Scholar 

  3. W.D. Kaplan and Y. Kauffmann: Annu. Rev. Mater. Res., 2006, vol. 36, pp. 1-48.

    Article  Google Scholar 

  4. M. Asta, F. Spaepen, J.F. Veen, 2004. MRS Bulletin. https://doi.org/10.1557/mrs2004.261

    Google Scholar 

  5. O.M. Magnussen, B.M. Ocko, M.J. Regan, K. Penanen, P.S. Pershan and M. Deutsch: Phys. Rev. Lett., 1995, vol. 74, pp. 4444-7.

    Article  Google Scholar 

  6. M.J. Regan, E.H. Kawamoto, S. Lee, P.S. Pershan, N. Maskil, M. Deutsch, O.M. Magnussen, B.M. Ocko and L.E. Berman: Phys. Rev. Lett., 1995, vol. 75, pp. 2498-501.

    Article  Google Scholar 

  7. O.G. Shpyrko, A.Y. Grigoriev, C. Steimer, P.S. Pershan, B. Lin, M. Meron, T. Graber, J. Gerbhardt, B. Ocko and M. Deutsch: Phys. Rev. B, 2004, vol. 70, pp. 224206.

    Article  Google Scholar 

  8. W.J. Huisman, J.F. Peters, M.J. Zwanenburg, S.A. de Vries, T.E. Derry, D. Abernathy and J.F. van der Veen: Nature, 1997, vol. 390, pp. 379-81.

    Article  Google Scholar 

  9. C.J. Yu, A.G. Richter, A. Datta, M.K. Durbin and P. Dutta: Phys. Rev. Lett., 1999, vol. 82, pp. 2326-9.

    Article  Google Scholar 

  10. H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimäki, T. Lippmann and G. Reiter: Nature, 2000, vol. 408, pp. 839-41.

    Article  Google Scholar 

  11. A.K. Doerr, M. Tolan, J.P. Schlomka and W. Press: Euro. Phys. Lett., 2000, vol. 52, pp. 330-6.

    Article  Google Scholar 

  12. S.E. Donnelly, R.C. Birtcher, C.W. Allen, I. Morrison, K. Furuya, M.H. Song, K. Mitsuishi and U. Dahmen: Science, 2002, vol. 296, pp. 507-10.

    Article  Google Scholar 

  13. J. Fischer and M. Methfessel: Phys. Rev. A, 1980, vol. 22, pp. 2836-43.

    Article  Google Scholar 

  14. W.E. McMullen and D.W. Oxtoby: J. Chem. Phys., 1987, vol. 86, pp. 4146-56.

    Article  Google Scholar 

  15. W.A. Curtin: Phys. Rev. Lett., 1987, vol. 59, pp. 1228-31.

    Article  Google Scholar 

  16. J.H. Sikkenk, J.O. Indekeu, J.M.J. van Leeuwen and E.O.Vossnack: Phys. Rev. Lett., 1987, vol. 59, pp. 98-101.

    Article  Google Scholar 

  17. W.-J. Ma, J.R. Banavar and J. Koplik: J. Chem. Phys., 1992, vol. 97, pp. 485-93.

    Article  Google Scholar 

  18. P. Hohenberg and W. Kohn: Phys. Rev., 1964, vol. 136B, pp. 864-71.

    Article  Google Scholar 

  19. W. Kohn and L.J. Sham: Phys. Rev., 1965, vol. 140A, pp. 1133-8.

    Article  Google Scholar 

  20. S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan and M. Rühle: Science, 2005, vol. 310, pp. 661-3.

    Article  Google Scholar 

  21. S.H. Oh, C. Scheu and M. Rühle: Korean J. Electron Microscopy Special Issue, 2006, vol. 1, pp. 19-24.

    Google Scholar 

  22. T.U. Schülli, R. Daudin, G. Renaud, A. Vaysset, O. Geaymond and A. Pasturel: Nature, 2010, vol. 464, pp. 1174-7.

    Article  Google Scholar 

  23. P. Geysermans, D. Gorse and V. Pontikis: J. Chem. Phys., 2000, vol. 113, pp. 6382-9.

    Article  Google Scholar 

  24. A. Hashibon, J. Adler, M.W. Finnis and W.D. Kaplan: Interface Sci., 2001, vol. 9, pp. 175-81.

    Article  Google Scholar 

  25. A. Hashibon, J. Adler, M.W. Finnis and W.D. Kaplan: Comp. Mater. Sci., 2002, vol. 24, pp. 443-52.

    Article  Google Scholar 

  26. J.P. Palafox-Hernandez, B.B. Laird and M. Asta: Acta Mater., 2011, vol. 59, pp. 3137-44.

    Article  Google Scholar 

  27. H. Men and Z. Fan: Comp. Mater. Sci., 2014, vol. 85, pp. 1-7.

    Article  Google Scholar 

  28. J.S. Wang, A. Horsfield, U. Schwingenschlögl and P.D. Lee: Phys. Rev. B, 2010, vol. 82, pp. 184203.

    Article  Google Scholar 

  29. K.A. Jackson: Interface Sci., 2002, vol. 10, pp. 159-69.

    Article  Google Scholar 

  30. P.R. Ten Wolde, M.J. Ruiz-Montero and D. Frenkel: Phys. Rev. Lett., 1995, vol. 75, pp. 2714-7.

    Article  Google Scholar 

  31. S. Auer and D. Frenkel: J. Chem. Phys., 2004, vol. 120, pp. 3015-29.

    Article  Google Scholar 

  32. S. Auer and D. Frenkel: Nature, 2001, vol. 409, pp. 1020-3.

    Article  Google Scholar 

  33. C.M. Fang and Z. Fan: to be submitted, 2017.

  34. R.R. Zope and Y. Mishin: Phys. Rev. B, 2003, vol. 68, pp. 024102.

    Article  Google Scholar 

  35. I.T. Todorov, W. Smith, K. Trachenko and M.T. Dove: J. Mater. Chem., 2006, vol. 16, pp. 1911-8.

    Article  Google Scholar 

  36. J.R. Hook and H.E. Hall: Solid state physics, 2nd ed., Wiley, Chichester, 1991.

    Google Scholar 

  37. P.J. Steinhardt, D.R. Nelson and M. Ronchetti: Phys. Rev. B, 1983, vol. 28, pp. 784-805.

    Article  Google Scholar 

  38. J.P. Hirth and J. Lothe: Theory of dislocations, 2nd ed., John Wiley, New York, 1982.

    Google Scholar 

  39. J.X. Zhu, M. Li, R. Rogers, W. Meyer, R.H. Ottewill, STS-73 Space Shuttle Crew, W.B. Russel and P.M. Chaikin: Nature, 1997, vol. 387, pp. 883-5.

  40. P.N. Pusey, W. van Megan, P. Bartlett, B.J. Ackerson, J.G. Rarity and S.M. Underwood: Phys. Rev. Lett., 1989, vol. 63, pp. 2753-6.

    Article  Google Scholar 

  41. K.F. Kelton, A.L. Greer, D.M. Herlach, D. Holland-Moritz, 2004, MRS Bulletin, https://doi.org/10.1557/mrs2004.264

    Google Scholar 

  42. R.P. Jensen. PhD thesis, University of Wisconsin-Madison, US, 1998.

  43. B. Jiang, H. Men and Z. Fan: to be submitted, 2017.

  44. G.P. Jones and J. Pearson: Metall. Trans. B, 1976, vol. 7, pp. 223-34.

    Article  Google Scholar 

  45. G.P. Jones: Solidification processing 1987, The Institute of Metals, London, 1988, pp. 496

  46. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823-35.

    Article  Google Scholar 

  47. T.E. Quested and A.L. Greer: Acta Mater., 2004, vol. 52, pp. 3859-68.

    Article  Google Scholar 

  48. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook and T. Hashimoto: Acta Mater., 2015, vol. 84, pp. 292-304.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. C.M. Fang and Professor H. Assadi for constructive discussion and Dr. I. Stone for carefully reading and correcting the manuscript. The EPSRC is gratefully acknowledged for providing financial support under Grant EP/H026177/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Fan.

Additional information

Manuscript submitted November 30, 2017

Electronic Supplementary Material

Supplementary Material Video 1. A video showing the trajectories of the atoms (light spheres, green online) in the 1st layer of the liquid at the interface during the simulation of a system with f = − 8 pct, equilibrated at 900 K. The atoms (dark spheres, blue online) in the surface layer of the substrate are fixed during the simulation. The solid-like atoms in the 1st layer are vibrating around their equilibrium positions provided by the substrate lattice, while the liquid-like atoms are more mobile and can move more than one atomic spacing. It should be pointed out that although the overall pattern of the mixed structures remains unchanged the atomic arrangement at the interface is dynamic; a solid-like atom at one moment may become liquid-like at another moment.

Supplementary material 1 (MPG 2652 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men, H., Fan, Z. Prenucleation Induced by Crystalline Substrates. Metall Mater Trans A 49, 2766–2777 (2018). https://doi.org/10.1007/s11661-018-4628-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4628-x

Navigation