Skip to main content
Log in

Experimental Investigation on High-Cycle Fatigue of Inconel 625 Superalloy Brazed Joints

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The high-cycle fatigue performance and crack growth pattern of transient liquid phase-brazed joints in a nickel-based superalloy Inconel 625 were studied. Assemblies with different geometries and types of overlaps were vacuum-brazed using the brazing paste Palnicro-36M in conditions such as to generate eutectic-free joints. This optimal microstructure provides the brazed assemblies with static mechanical strength corresponding to that of the base metal. However, eutectic micro-constituents were observed in the fillet region of the brazed assembly due to an incomplete isothermal solidification within this large volume of filler metal. The fatigue performance increased significantly with the overlap distance for single-lap joints, and the best performance was found for double-lap joints. It was demonstrated that these apparent changes in fatigue properties according to the specimen geometry can be rationalized when looking at the fatigue data as a function of the local stress state at the fillet radii. Fatigue cracks were nucleated from brittle eutectic phases located at the surface of the fillet region. Their propagation occurred through the bimodal microstructure of fillet and the diffusion region to reach the base metal. High levels of crack path tortuosity were observed, suggesting that the ductile phases found in the microstructure may act as a potential crack stopper. The fillet region must be considered as the critical region of a brazed assembly for fatigue applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.R. Davis: Heat-resistant materials, ASM International, Materials Park, OH, 1997, pp. 1-592.

    Google Scholar 

  2. N. Sheng, X. Hu, J. Liu, T. Jin, X. Sun, and Z. Hu: Metall. Mater. Trans. A, 2015, 46, pp. 1670-1677.

    Article  Google Scholar 

  3. R. Bakhtiari, and A. Ekrami: Mater. Charact., 2012, 66, pp. 38-45.

    Article  Google Scholar 

  4. D.S. Duvall, W.A. Owczarski, and D.F. Paulonis: Weld. J., 1974, 53, pp. 203-214.

    Google Scholar 

  5. W.F. Gale, and S.V. Orel: Metall. Mater. Trans. A, 1996, 27A, pp. 1925-1931.

    Article  Google Scholar 

  6. J. Ruiz-Vargas, N. Siredey-Schwaller, N. Gey, P. Bocher, and A. Hazotte: J. Mater. Process. Technol., 2013, 213, pp. 20-29.

    Article  Google Scholar 

  7. A. Sakamoto, C. Fujiwara, T. Hattori, and S. Sakai: Weld. J., 1989, 68, pp. 63-71.

    Google Scholar 

  8. Y. Zhishui, L. Ruifeng, and S. Kun: Appl. Mech. and Mater., 2012, 236-237, pp. 26-30.

    Google Scholar 

  9. A.T. Egbewande, C. Chukwukaeme, and O.A. Ojo: Mater. Charact., 2008, 59, pp. 1051-1058.

    Article  Google Scholar 

  10. O.J. Adebajo, and O.A. Ojo: Metall. Mater. Trans. A, 2017, 48, pp. 26-33.

    Article  Google Scholar 

  11. V. Jalilvand, H. Omidvar, H.R. Shakeri, and M.R. Rahimipour: Mater. Charact., 2013, 75, pp. 20-28.

    Article  Google Scholar 

  12. L.M. Suave, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, D. Bertheau and J. Laigo: Metall. Mater. Trans. A, 2014, 45, pp. 2963-2982.

    Article  Google Scholar 

  13. L.M. Suave, J. Cormier, D. Bertheau, P. Villechaise, A. Soula, Z. Hervier and F. Hamon: Mater. Sci. Eng. A, 2016, 650, pp. 161-170.

    Article  Google Scholar 

  14. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Mater. Sci. Technol., 2014, 30, pp. 109-115.

    Article  Google Scholar 

  15. C.Y. Su, W.C. Lih, C.P. Chou, and H.C. Tsai: J. Mater. Process. Technol., 2001, 115, pp. 326-332.

    Article  Google Scholar 

  16. S. Neumeier, M. Dinkel, F. Pyczak, and M. Goken: Mater. Sci. Eng. A, 2011, 528, pp. 815-822.

    Article  Google Scholar 

  17. L.O. Osoba, and O.A. Ojo: Metal. Mater. Trans. A, 2013, 44, pp. 4020-4024.

    Article  Google Scholar 

  18. X. Yang, C. Dong, D. Shi, and L. Zhang: Mater. Sci. Eng., A, 2011, 528, pp. 7005-7011.

    Article  Google Scholar 

  19. W.A. Demo, S. Ferrigno, D. Budinger, and E. Huron: Superalloys 2000 (9th International Symposium) Champion, Pennsylvania, 2000, pp. 713–20.

  20. D. Shi, C. Dong, X. Yang, Y. Sun, J. Wang, and J. Liu: Mater. Des., 2013, 45, pp. 643-652.

    Article  Google Scholar 

  21. Y.H. Kim, I.H. Kim, and C.S. Kim: Key Eng. Mater., 2005, 297-300, pp. 2876-2882.

    Article  Google Scholar 

  22. J.D. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Charact., 2008, 59, pp. 68-73.

    Article  Google Scholar 

  23. S. Steuer, and R.F. Singer: Metall. Mater. Trans. A, 2014, 45, pp. 3545-3553.

    Article  Google Scholar 

  24. Metallic Materials and Elements for Aerospace Vehicle Structures, U.S. Department of Defense, 1998.

  25. Technical bulletin Inconel alloy 625, Special Metals Corporation, pp. 1–18.

  26. The AWS Brazing Handbook, 5th ed., American Welding Society (AWS), 2007, pp. 1–704.

  27. D. Turner, Évolution microstructurale des joints brasés sur l’inconel 718 avec les alliages BNi-2 et PALNICRO 36M, Master Thesis, École de technologie supérieure, 2005.

  28. J. Ruiz-Vargas, Étude des mécanismes de formation des microstructures lors du brasage isotherme de superalliages à base de nickel, PhD thesis, École de technologie supérieure, 2014.

  29. J. Chen, V. Demers, E.-L. Cadotte, D. Turner, and P. Bocher: J. Mater. Eng. Perform., 2016, 26, pp. 547–553.

    Article  Google Scholar 

  30. E. Lugscheider, H. Reimann, and O. Knotek: Weld. J., 1977, 56, pp. 189-192.

    Google Scholar 

  31. D.K. Wang, H.C. Wu, R.K. Shiue, and C. Chen: Adv. Mater. Res., 2008, 51, pp. 71-78.

    Article  Google Scholar 

  32. S.D. Nelson, S. Liu, S. Kottilingam, and J.C. Madeni: Weld. in the World, 2014, 58, pp. 593-600.

    Article  Google Scholar 

  33. N.C. Sheng, J.D. Liu, T. Jin, X.F. Sun, and Z.Q. Hu: Metall. Mater. Trans. A, 2013, 44, pp. 1793-1804.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC), the Center for Research and Innovation in Aerospace in Quebec (CRIAQ), Pratt & Whitney Canada, and Turbomeca Canada under MANU-405 for financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Demers.

Additional information

Manuscript submitted July 17, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Demers, V., Turner, D.P. et al. Experimental Investigation on High-Cycle Fatigue of Inconel 625 Superalloy Brazed Joints. Metall Mater Trans A 49, 1244–1253 (2018). https://doi.org/10.1007/s11661-018-4474-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4474-x

Navigation