Skip to main content

Advertisement

Log in

Influence of Annealing on Microstructure and Mechanical Properties of Refractory CoCrMoNbTi0.4 High-Entropy Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A novel refractory CoCrMoNbTi0.4 high-entropy alloy (HEA) was prepared via vacuum arc melting. After annealing treatment at different temperatures, the microstructure evolution, phase stability, and mechanical properties of the alloy were investigated. The alloy was composed of two primary body-centered cubic structures (BCC1 and BCC2) and a small amount of (Co, Cr)2Nb-type Laves phase under different annealing conditions. The microhardness and compressive strength of the heat-treated alloy was significantly enhanced by the solid-solution strengthening of the BCC phase matrix and newborn Laves phase. Especially, the alloy annealed at 1473 K (1200 °C) achieved the maximum hardness and compressive strength values of 959 ± 2 HV0.5 and 1790 MPa, respectively, owing to the enhanced volume fraction of the dispersed Laves phase. In particular, the HEAs exhibited promising high-temperature mechanical performance, when heated to an elevated temperature of 1473 K (1200 °C), with a compressive fracture strength higher than 580 MPa without fracture at a strain of more than 20 pct. This study suggests that the present refractory HEAs have immense potential for engineering applications as a new class of high-temperature structural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299-303.

    Article  Google Scholar 

  2. Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, and T.J. Li: Mater. Des., 2014, vol. 57, pp. 67-72.

    Article  Google Scholar 

  3. L. Jiang, Z.Q. Cao, J.C. Jie, J.J. Zhang, Y.P. Lu, T.M. Wang, and T.J. Li: J. Alloy. Compd., 2015, vol. 649, pp. 585-590.

    Article  Google Scholar 

  4. C. Li, Y.F. Xue, M.T. Hua, T.Q. Cao, L.L. Ma, and L. Wang: Mater. Des., 2016, vol. 90, pp. 601-609.

    Article  Google Scholar 

  5. D.C. Ma, M.J. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, and D. Raabe: Acta. Mater., 2015, vol. 98, pp. 288-296.

    Article  Google Scholar 

  6. M.R. Chen, S.J. Lin, J.W. Yeh, S. Chen, Y.S. Huang, and M.H. Chuang: Metall. Mater. Trans., 2006, vol. 37, pp. 1363-1369.

    Article  Google Scholar 

  7. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh: Acta. Mater., 2011, vol. 59, pp. 6308-6317.

    Article  Google Scholar 

  8. Z.T. Zhang, Eugen Axinte, W.J. Ge, C.Y. Shang, and Y. Wang: Mater. Des., 2016, vol. 108, pp. 106-113.

    Article  Google Scholar 

  9. O.N. Senkov and C.F. Woodward: Mater. Sci. Eng. A., 2011, vol. 529, pp. 311-320.

    Article  Google Scholar 

  10. A. Poulia, E. Georgatis, A. Lekatou, and A.E. Karantzalis: Int. J. Refract. Met. Hard. Mater., 2016, vol. 57, pp. 50-63.

    Article  Google Scholar 

  11. Mitsuharu Todai, Takeshi Nagase, Takao Hori, Aira Matsugaki, Aiko Sekita, and Takayoshi Nakano: Scripta. Mater., 2017, vol. 129, pp. 65-68.

    Article  Google Scholar 

  12. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle: Intermetallics., 2011, vol. 19, pp. 698-706.

    Article  Google Scholar 

  13. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Intermetallics., 2010, vol. 18, pp. 1758-1765.

    Article  Google Scholar 

  14. O. N. Senkov, J. M. Scott, S. V. Senkova, F. Meisenkothen, D. B. Miracle, and C. F. Woodward: J. Mater. Sci., 2012, vol. 47, pp. 4062-4074.

    Article  Google Scholar 

  15. C.C. Juan, K.K. Tseng, W.L. Hsu, M.H. Tsai, C.W. Tsai, C.M. Lin, S.K. Chen, S.J. Lin, and J.W. Yeh: Mater. Lett., 2016, vol. 175, pp. 284-287.

    Article  Google Scholar 

  16. Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, and K.F. Yao: Intermetallics., 2017, vol. 84, pp. 153-157.

    Article  Google Scholar 

  17. Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, and X.D. Hui: Mater. Des., 2015, vol. 83, pp. 651-660.

    Article  Google Scholar 

  18. H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, H.-J. Christ, and M. Heilmaier: J. Alloy. Compd., 2016, vol. 661, pp. 206-215.

    Article  Google Scholar 

  19. A.E. Karantzalis, A. Poulia, E. Georgatis, and D. Petroglou: Scripta. Mater., 2017, vol. 131, pp. 51-54.

    Article  Google Scholar 

  20. N.D. Stepanov, N.Yu. Yurchenko, E.S. Panina, M.A. Tikhonovsky. and S.V. Zherebtsov: Mater. Lett., 2017, vol. 188, pp. 162-164.

    Article  Google Scholar 

  21. O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward: Mater. Sci. Eng. A., 2013, vol. 565, pp. 51-62.

    Article  Google Scholar 

  22. O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle: Acta. Mater., 2013, vol. 61, pp. 1545-1557.

    Article  Google Scholar 

  23. N.Yu. Yurchenko, N.D. Stepanov, D.G. Shaysultanov, M.A. Tikhonovsky, and G.A. Salishchev: Mater. Charact., 2016, vol. 121, pp. 125-134.

    Article  Google Scholar 

  24. N.D. Stepanov, N. Yu Yurchenko, D.V. Skibin, M.A. Tikhonovsky, and G.A. Salishchev: J. Alloy. Compd., 2015, vol. 652, pp. 266-280.

    Article  Google Scholar 

  25. M.N. Zhang, X.L. Zhou, and J.H. Li: J. Mater. Eng. Perform., 2017, vol. 26, pp. 3657-3665.

    Article  Google Scholar 

  26. H. Zhang, Y. Pan, and Y.Z. He: Acta. Metall. Sin., 2011, vol. 47, pp. 1075-1079.

    Google Scholar 

  27. X Yang, Y Zhang (2012) Mater. Chem. Phys. 132:233-238.

    Article  Google Scholar 

  28. S. Guo, and C. T. Liu: Prog. Nat. Sci-Mater., 2011, vol. 21, pp. 433-436.

    Article  Google Scholar 

  29. Akira Takeuchi, and Akihisa Inoue: Mater. Trans., 2005, vol. 46, pp. 2817-2829.

    Article  Google Scholar 

  30. J.H. Pi, Y. Pan, L. Zhang, and H. Zhang: J. Alloy. Compd., 2011, vol. 509, pp. 5641-5645.

    Article  Google Scholar 

  31. Z.J. Wang and S. Guo, C.T. Liu: JOM., 2014, vol. 66, pp. 1966-1972.

    Article  Google Scholar 

  32. Y. Dong, Y.P. Lu, L. Jiang, T.M. Wang, and T.J. Li: Intermetallics., 2014, vol. 52, pp. 105-109.

    Article  Google Scholar 

  33. N. Yurchenko, N. Stepanov, and G. Salishchev: Maters. Sci. Tech-lond., 2017, vol. 33, pp. 17-22.

    Article  Google Scholar 

  34. F. He, Z.J. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang, and C.T. Liu: J. Alloy. Compd., 2016, vol. 656, pp. 284-289.

    Article  Google Scholar 

  35. W.H. Liu, J.Y. He, H.L. Huang, and H. Wang, Z.P. Lu, C.T. Liu: Intermetallics., 2015, vol. 60, pp. 1-8.

    Article  Google Scholar 

  36. L. Jiang, Y.P. Lu, W. Wu, Z.Q. Cao, and T.J. Li: J. Mater. Sci. Technol., 2016, vol. 32, pp. 245-250.

    Article  Google Scholar 

  37. M.N. Zhang, X.L. Zhou, X.N. Yu, and J.H. Li: Surf. Coat. Tech., 2017, vol. 311, pp. 321-329.

    Article  Google Scholar 

  38. T.T. Shun, L.Y. Chang, and M.H. Shiu: Mater. Sci. Eng. A., 2012, vol. 556, pp. 170-174.

    Article  Google Scholar 

  39. Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, and T.J. Li: J. Alloy. Compd., 2013, vol. 573, pp. 96-101.

    Article  Google Scholar 

  40. N.N. Guo, L. Wang n, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su n, J.J. Guo, and H.Z. Fu: Mater. Sci. Eng. A., 2016, vol. 651, pp. 698-707.

    Article  Google Scholar 

  41. Y. Liu, Y. Zhang, H. Zhang, N.J. Wang, X. Chen, H.W. Zhang, and Y.X. Li: J. Alloy. Compd., 2017, vol. 694, pp. 869-876.

    Article  Google Scholar 

  42. C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, and J.W. Yeh: Intermetallics., 2015, vol. 62, pp. 76-83.

    Article  Google Scholar 

  43. D.B. Miracle, and O.N. Senkov: Acta. Mater., 2017, vol. 122, pp. 448-511.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Research and Development Program of China (Grant No. 2017YFB0306102), the National Natural Science Foundation of China (Grant No. 51271034) and the Fundamental Research Funds for the Central Universities (Grant No. FRF-BR-16-023A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianglin Zhou.

Additional information

Manuscript submitted August 25, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhou, X., Zhu, W. et al. Influence of Annealing on Microstructure and Mechanical Properties of Refractory CoCrMoNbTi0.4 High-Entropy Alloy. Metall Mater Trans A 49, 1313–1327 (2018). https://doi.org/10.1007/s11661-018-4472-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4472-z

Navigation