Skip to main content

Advertisement

Log in

A Mechanical, Microstructural, and Damage Study of Various Tailor Hot Stamped Material Conditions Consisting of Martensite, Bainite, Ferrite, and Pearlite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper examines the mechanical, microstructural, and damage characteristics of five different material conditions that were created using the tailored hot stamping process with in-die heating. The tailored material conditions, TMC1 to TMC5 (softest-hardest), were created using die temperatures ranging from 700 °C to 400 °C, respectively. The tensile strength (and total elongation) ranged from 615 MPa (0.24) for TMC1 to 1122 MPa (0.11) for TMC5. TMC3 and TMC4 exhibited intermediate strength levels, with almost no increase in total elongation relative to TMC5. FE-SEM microscopy was used to quantify the mixed-phase microstructures, which ranged in volume fractions of ferrite, pearlite, bainite, and martensite. High-resolution optical microscopy was used to quantify void accumulation and showed that the total void area fraction at ~ 0.60 thickness strain was low for TMC1 and TMC5 (~ 0.09 pct) and highest for TMC3 (0.31 pct). Damage modes were characterized and revealed that the poor damage behavior of TMC3 (martensite/bainite/ferrite composition) was a result of small martensitic grains forming at grain boundaries and grain boundary junctions, which facilitated void nucleation as shown by the highest measured void density for this particular material condition. The excellent ductility of TMC1 was a result of a large grained ferritic/pearlitic microstructure that was less susceptible to void nucleation and growth. Large titanium nitride (TiN) inclusions were observed in all of the tailored material conditions and it was shown that they noticeably contributed to the total void accumulation, specifically for the TMC3 and TMC4 material conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. [1] H. Karbasian and E. Tekkaya: J. Mater. Process. Tech., 2010, vol. 210, pp 2103–18.

    Article  Google Scholar 

  2. [2] M. Maikranz-Valentin, U. Weidig, U. Schoof, H.H. Becker, and K. Steinhoff: Steel Res. Int., 2008, vol. 79, pp. 92-97.

    Article  Google Scholar 

  3. [3] M. Merklein, M. Wieland, M. Lechner, S. Bruschi, and A. Ghotti: J. Mater. Process. Tech., 2016, vol. 228, pp. 11-24.

    Article  Google Scholar 

  4. [4] R. George, A. Bardelcik, and M.J. Worswick: J. Mater. Process. Tech., 2012, vol. 212, pp. 2386-99.

    Article  Google Scholar 

  5. [5] B. Klein, S. Crichley, and K. Khang: Great Designs in Steel Seminar, Livonia, USA, 2015.

    Google Scholar 

  6. [6] A. Bardelcik, C. Salisbury, S. Winkler, M.J. Worswick, and M. Wells: Int. J. Impact Eng., 2010, vol. 37, pp. 694-702.

    Article  Google Scholar 

  7. [7] A. Bardelcik, M.J. Worswick, S. Winkler, and M. Wells: Int. J. Impact Eng., 2012, vol. 50, 49-62.

    Article  Google Scholar 

  8. [8] A. Barcellona and D. Palmeri: Metall. Mater. Trans. A., 2009, vol. 40, pp. 1160-74.

    Article  Google Scholar 

  9. [9] J. Min, J. Lin, Y. Min, and F. Li: Mater. Sci. Eng. A., 2012, vol. 550, pp. 375-87.

    Article  Google Scholar 

  10. [10] A. Bardelcik, M.J. Worswick, and M. Wells: Mater. and Des., 2014, vol. 55, pp. 509-25.

    Article  Google Scholar 

  11. [11] S. Golling, R. Ostlund, and M. Oldenburg: J. Mater. Process. Tech., 2016, vol. 228, pp. 88-97.

    Article  Google Scholar 

  12. [12] P. Srithananan, P. Kaewtatip, and V. Uthaisangsuk: Mat. Sci. Eng. A., 2016, vol. 667, pp. 61-76.

    Article  Google Scholar 

  13. [13] B.T. Tang, Q.L. Wang, S. Bruschi, A. Ghiotti, and P.F. Bariani: J. Manuf. Sci. E-T ASME, 2014, vol. 136, 1-14.

    Article  Google Scholar 

  14. [14] T.K. Eller, L. Greve, M. Andres, M. Medricky, V.T. Meinders, and A.H. van den Boogaard: J. Mater. Process. Tech., 2016, vol. 228, pp. 43-58.

    Article  Google Scholar 

  15. [15] T.K. Eller, L. Greve, M. Andres, M. Medricky, A. Hatscher, V.T. Meinders, and A.H. van den Boogaard: J. Mater. Process. Tech., 2014, vol. 214, pp. 1211-27.

    Article  Google Scholar 

  16. [16] D. Mohr and F. Ebnoether: Int. J. Solids Struct., 2009, vol. 46, pp. 3535-47.

    Article  Google Scholar 

  17. [17] K. Omer, L. ten Kortenaar, C. Butcher, M.J. Worswick, S. Malcolm, and D. Detwiler: Int. J. Impact Eng., 2017, vol. 103, pp. 12-28.

    Article  Google Scholar 

  18. Y. Prajogo: MASc Thesis, University of Waterloo, 2015.

  19. K. Omer, R. George, A. Bardelcik, M.J. Worswick, S. Malcolm, and D. Detwiler: Int. J. Mater. Form., 2018, vol. 11(1), pp. 149–64.

    Article  Google Scholar 

  20. ArcelorMittal – Usibor® 1500-AS CCT diagram (personal communication), 2009.

  21. [21] R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, and M. Finn: Int. J. Impact Eng., 2005, vol. 32, pp. 541-60.

    Article  Google Scholar 

  22. [22] G. Krauss: Mat. Sci. Eng. A., 1999, vol. A273-275, pp. 40-57.

    Article  Google Scholar 

  23. T.N Baker: Mater. Sci. Technol. 2009, vol. 25, pp. 1083-107

  24. [24] Y. Li and T.N. Baker: Mat. Sci. and Tech., 2010, vol. 26, pp. 1029-40.

    Article  Google Scholar 

  25. [25] N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor, and A.P. Gerlich: Mat. Sci. Eng. A., 2016, vol. 662, pp. 481-91.

    Article  Google Scholar 

  26. [26] H.C. Chen and G.H. Cheng: J. Mater. Sci, 1989, vol. 24, pp. 1991-94.

    Article  Google Scholar 

  27. [27] H.K.D.H. Bhadeshia and D.V. Edmonds: Met. Sci., 1983, vol. 17, pp. 411-19.

    Article  Google Scholar 

  28. [28] M.X. Zhang and P.M. Kelly: Mater. Char., 1998, vol. 40, 159-68.

    Article  Google Scholar 

  29. [29] K. Banjerjee: Int. J. Metall. Eng., 2013, vol. 2 (1), pp. 100-10.

    Google Scholar 

  30. [30] H.K.D.H. Bhadeshia and J.W. Christian: Metall. Mater. Trans. A., 1990, vol. 21 (3), pp. 769-97.

    Google Scholar 

  31. [31] F.G. Caballero, H. Roelofs, S. Hasler, C. Capdevila, J. Chao, J. Cornide, and C. Garcia-Mateo: Mats. Sci. Tech., 2012, vol. 28, pp. 95-102.

    Article  Google Scholar 

  32. [32] T. Furuhara, H. Kawata, S. Morito, and T. Maki: Mat. Sci. Eng. A., 2006, vol. 431, pp. 228-36.

    Article  Google Scholar 

  33. [33] G. Krauss: Principles of heat treatment of steel, 1st ed., American Society for Metals, Metals Park, Ohio, 1980.

    Google Scholar 

  34. [34] H. Jarvinen, M. Isakov, T. Nyyssonen, M. Jarvenpaa, and P. Peura: Mat. Sci. Eng. A., 2016, vol. 676, pp. 109-20.

    Article  Google Scholar 

  35. B. Abrivard, E. Pessard, F.M.P. Delhaye, and B. Gerin: 13th International Spring Meeting SF2M, May 22-23, Paris, France, 2013.

  36. [36] D.K. Matlock, and J.G. Speer: Mater. Sci. Technol., 2009, vol. 25, 1118-25.

    Article  Google Scholar 

  37. [37] S. Vervynckt, K. Verbeken, B. Lopez, and J.J. Jonas: Int. Mater. Rev., 2012, vol. 57, pp. 187-207.

    Article  Google Scholar 

  38. [38] H. Scott, J.D. Boyd and A.K. Pilkey: Mat. Sci. Eng. A., 2017, vol. 682, pp. 139-46.

    Article  Google Scholar 

  39. [39] N. Pathak, C. Butcher, M.J. Worswick, E. Bellhouse and J. Gao: Materials, 2017, vol. 10, 1-29.

    Article  Google Scholar 

  40. [40] Q. Lai, O. Bouaziz, M. Goune, L. Brassart, M. Verdier, G. Parry, A. Perlade, Y. Brecht, and T. Pardoen: Mat. Sci. Eng. A., 2015, vol. 646, pp. 322-31.

    Article  Google Scholar 

  41. [41]G. Avramovic-Cingara, A.R. Saleh, M.K. Jain, and D.S. Wilkinson: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 3117-27.

    Article  Google Scholar 

  42. [42] J. Kadhodapour, A. Butz, and S. Ziaei Rad: Acta Mater., 2011, vol. 59, pp. 2575-88.

    Article  Google Scholar 

  43. [43] A.F. Szewczyk and J. Gurland: Metall. Trans. A., 1982, vol. 13A, pp. 1821-26.

    Article  Google Scholar 

  44. [44] E. Maire, O. Bouaziz, M. Di Michiel, and C. Verdu: Acta Mater., 2008, vol. 56, pp. 4954-64.

    Article  Google Scholar 

  45. [45] J. Samei, D.G. Green, J. Cheng, and M.S. Lima: Mater. and Des., 2016, vol. 92, pp. 1028-37.

    Article  Google Scholar 

  46. [46] C.I.A. Thomson, M.J. Worswick, A.K. Pilkey, and D.J. Lloyd: J. Mech. Phys. Solids, 2003, vol. 51, pp. 127-46.

    Article  Google Scholar 

  47. [47] M. Erdogan: J. Mater. Sci., 2002, vol. 37, pp. 3623-30.

    Article  Google Scholar 

  48. [48] M. Azuma, S. Goutianos, N. Hansen, G. Winther, and X. Huang: Mater. Sci. Tech., 2012, vol. 28 (9-10), pp. 1092-100.

    Article  Google Scholar 

  49. [49] N.J. Kim and G. Thomas, Metall. Mater. Trans. A., 1981, vol. 12A, pp. 483-89.

    Article  Google Scholar 

  50. A.A. Benzerga: PhD Thesis, Ecole National Superieure des Mines de Paris, 2000.

  51. [51] S. Zhang, Y. Huang, B. Sun, Q. Liao, H. Lu, B. Jian, H. Mohrbacher, W. Zhang, A. Guo, and Y. Zhang: Mat. Sci. Eng. A., 2015, vol. 626, pp. 136-43.

    Article  Google Scholar 

  52. [52] C. Landron, E. Maire, O. Bouaziz, J. Adrien, L. Lecarme, and A. Bareggi: Acta Mater., 2011, vol. 59, pp. 7564-73.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this research from Honda R&D Americas, Promatek Research Center (Cosma International), ArcelorMittal, Automotive Partnership Canada, the Natural Sciences and Engineering Research Council, the Ontario Research Fund and the Canada Research Chair Secretariat is gratefully acknowledged. The authors would like to thank Professor Emeritus Doug Boyd at Queen’s University for sharing his knowledge and expertise in identifying steel microstructures. Also, the help of Mr. Robert Harris, at the University of Guelph Advanced Analysis Center is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bardelcik.

Additional information

Manuscript submitted August 9, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardelcik, A., Vowles, C.J. & Worswick, M.J. A Mechanical, Microstructural, and Damage Study of Various Tailor Hot Stamped Material Conditions Consisting of Martensite, Bainite, Ferrite, and Pearlite. Metall Mater Trans A 49, 1102–1120 (2018). https://doi.org/10.1007/s11661-018-4471-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4471-0

Navigation