Skip to main content
Log in

Crystallographic Texture Evolution of a Zinc Sheet Subjected to Different Strain Paths

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The use of zinc sheets has largely increased in the last years, fundamentally because of new tendencies in architecture and, at the same time, due to its excellent properties, as corrosion resistance under aggressive climatic conditions, malleability, recyclability, and surface finishing aspect. In the present work, the X-ray diffraction technique is used to characterize the crystallographic texture evolution of a strongly anisotropic Zn20 zinc sheet (Zn-Cu-Ti) subjected to uniaxial tension, plane strain, and equibiaxial tension, for specimens cut at 0, 45, and 90 deg with respect to the rolling direction. The crystallographic texture evolution is evaluated by means of pole figures, orientation distribution function, and Kearns factors. For all tested strain paths, deformation produces a decrease in the intensity of the crystallographic textures, due to a dispersion of the orientations of the different axes around the initial maxima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. N. Wang, J.C. Huang: Mater. Chem. Phys., 2003, vol. 81, pp. 11-26.

    Article  Google Scholar 

  2. H. S. Rosenbaum: Acta Metall., 1961, vol. 9, pp. 742–48.

    Article  Google Scholar 

  3. J. N. Florando, M. Rhee, A. Arsenlis, M. M. Leblanc, D. H. Lassila: Philos. Mag. Lett., 2006, vol. 86, pp. 795–805.

    Article  Google Scholar 

  4. A. N. Bramley, P. B. Mellor: Int. J. Mech. Sci., 1968, vol. 10, pp. 211–19.

    Article  Google Scholar 

  5. C. Schwindt, F. Schlosser, M.A. Bertinetti, M. Stout, J.W. Signorelli: Int. J. Plasticity, 2015, vol. 73, pp. 62–99.

    Article  Google Scholar 

  6. M. J. Philippe, F. Wagner, F. E. Mellab, C. Esling, J. Wegria: Acta Metall. Mater., 1994, vol. 42, pp. 239–50.

    Article  Google Scholar 

  7. M.A. Valouch: Metallwisrtsch., 1932, vol. 11, 165pp.

    Google Scholar 

  8. I.L. Dillamore, W.J. Roberts: Metal Rev., 1965, vol. 39, 10pp.

    Google Scholar 

  9. M. Diot, J.J. Fundenberger, M.J. Philippe, J. Wégria, C. Esling: Scripta Mater., 1998, vol.39, pp. 1623–30.

    Article  Google Scholar 

  10. M. Diot, M. J. Philippe, J. Wégria, C. Esling: Scripta Mater., 1999, vol. 40, pp. 1295–1303.

    Article  Google Scholar 

  11. F. Zhang, G. Vincent, Y. H. Sha: Scripta Mater., 2004, vol. 50, pp. 1011–15.

    Article  Google Scholar 

  12. D. E. Solas, C. N. Tomé, O. Engler, H. R. Wenk: Acta Mater., 2001, vol. 49, pp. 3791–3801.

    Article  Google Scholar 

  13. M. Faur, G. Cosmeleaţă: U.P.B. Sci. Bull., 2006, ser. B, vol. 68, pp. 67–74.

    Google Scholar 

  14. A.P. Miodownik: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, 1991.

    Google Scholar 

  15. T. H. Muster, W. D. Ganther, I. S. Cole: Corros. Sci., 2007, vol. 49, pp. 2037–58.

    Article  Google Scholar 

  16. Y. Jansen, R.E. Logé, P-Y. Manach, G. Carbuccia, M. Milesi: Int. J. Mater. Form., 2016, doi:10.1007/s12289-016-1313-8.

    Google Scholar 

  17. M.A. Sutton, J-J. Orteu, H.W. Schreier, 2009, Image Correlation for Shape, Motion and Deformation Measurements, 2009 edition, Springer, New York.

    Google Scholar 

  18. L. Lutterotti. Maud (material analysis using diffraction), August 2016.

  19. D.L. Kaiser, J.R.L. Watters: Standard reference material ®660b, 2010.

  20. N.C. Popa: J. Appl. Crystallogr, 1998, vol. 31, pp. 176–80.

    Article  Google Scholar 

  21. F. Bachmann, R. Hielscher, H. Schaeben: Solid State Phenom., 2010, vol. 160, pp. 63–68.

    Article  Google Scholar 

  22. D. Mainprice, F. Bachmann, R. Hielscher, H. Schaeben: Geol. Soc. Spec. Publ., 2014, vol. 409, pp. 251–71.

    Article  Google Scholar 

  23. J. A. Gruber, S. A. Brown, G. A. Lucadamo: J. Nucl. Mater., 2011, vol. 408, pp. 176–82.

    Article  Google Scholar 

  24. H. Okamoto: J. Phs. Eqil. and Diff., 2008, vol. 29, pp. 211–12.

    Article  Google Scholar 

  25. S.W.K. Morgan: Zinc and Its Alloys and Compounds, Wiley, New York, 1985, pp. 155–64.

    Google Scholar 

  26. A. Jäger, V. Gärtnerová, T. Mukai: Mater. Charact., 2014, vol. 93, pp. 102–09.

    Article  Google Scholar 

  27. J. Signorelli, A. Tommasi: Earth Planet. Sci. Lett., 2015, vol. 430, pp. 356–66.

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results was funded by the Project: CNRS-CONICET PICS 16064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Walter Signorelli.

Additional information

Manuscript submitted December 14, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlosser, F., Schwindt, C., Fuster, V. et al. Crystallographic Texture Evolution of a Zinc Sheet Subjected to Different Strain Paths. Metall Mater Trans A 48, 2858–2867 (2017). https://doi.org/10.1007/s11661-017-4069-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4069-y

Keywords

Navigation