Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of V-Nb Microalloyed Ultrafine-Grained Dual-Phase Steels Processed Through Severe Cold Rolling and Intercritical Annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ultrafine-grained (UFG) dual-phase (DP) steel was produced by severe cold rolling (true strain of 2.4) and intercritical annealing of a low carbon V-Nb microalloyed steel in a temperature range of 1003 K to 1033 K (730 °C to 760 °C) for 2 minutes, and water quenching. The microstructure of UFG DP steels consisted of polygonal ferrite matrix with homogeneously distributed martensite islands (both of size <1 µm) and a small fraction of the inter lath films of retained austenite. The UFG DP steel produced through intercritical annealing at 1013 K (740 °C) has good combination of strength (1295 MPa) and ductility (uniform elongation, 13 pct). The nanoscale V- and Nb-based carbides/carbonitrides and spheroidized cementite particles have played a crucial role in achieving UFG DP microstructure and in improving the strength and work hardening. Analysis of work hardening behavior of the UFG DP steels through modified Crussard–Jaoul analysis showed a continuously varying work hardening rate response which could be approximated by 2 or 3 linear regimes. The transmission electron microscopy analysis on post tensile-tested samples indicated that these regimes are possibly related to the work hardening of ferrite, lath, and twin martensite, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. ULSAB-AVC Body Structure Materials, Technical Transfer Dispatch No. 6, May, 2001.

  2. Y. T Zhu, and C. L. Terry, Mater. Sci. Eng. A, 2000, vol. 291, pp. 46–53

    Article  Google Scholar 

  3. Z. Horita, T. Fujinami, and T. G. Langdon, Mater. Sci. Eng. A, 2001, vol.318, pp. 34-41.

    Article  Google Scholar 

  4. G. Frommeyer, and J. A. Jiménez, Metall. Mater. Trans. A, 2005, vol. 36A, pp. 295–300.

    Article  Google Scholar 

  5. H. Conrad, and J. Narayan Acta Mater., 2002, vol. 50, pp. 5067–78.

    Article  Google Scholar 

  6. H. Conrad, Mater. Sci. Eng. A, 2003, vol.341, pp. 216–28.

    Article  Google Scholar 

  7. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Scripta Mater., 2002, vol. 47, pp. 893–99.

    Article  Google Scholar 

  8. D. Jia, K.T. Ramesh, and E. Ma, Acta Mater., 2003, vol. 3, pp. 3495–509.

    Article  Google Scholar 

  9. M. Calcagnotto, D. Ponge, and D. Raabe, Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  10. M. Papa Rao, V. Subramanya Sarma and S. Sankaran, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5313–17.

    Article  Google Scholar 

  11. KT. Park, YK. Lee, and DH. Shin, ISIJ Int., 2005, vol. 45, pp. 750–55.

    Article  Google Scholar 

  12. Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, and D.H. Shin, Acta Mater., 2005, vol. 53, pp. 3125–34.

    Article  Google Scholar 

  13. M. Okayasu, K. Sato, M. Mizuno, DY. Hwang, and D.H. Shin, Int. J. Fatigue, 2008, vol. 30, pp. 1358–65.

    Article  Google Scholar 

  14. M. Delince, Y. Brechet, J.D. Embury, M.G.D. Geers, P.J. Jacques, and T. Pardoen, Acta Mater., 2007, vol.55,pp. 2337–50.

    Article  Google Scholar 

  15. M. Calcagnotto, D. Ponge, and D. Raabe Mater. Sci. Eng. A, 2010, vol.527, pp. 7832–40.

    Article  Google Scholar 

  16. K.T. Park, S.Y. Han, B.D. Ahn, D.H. Shin, Y.K. Lee and K.K. Um, Scripta Mater., 2004, vol.51,pp. 909–13.

    Article  Google Scholar 

  17. M. Papa Rao, V. Subramanya Sarma and S. Sankaran, Mater. Sci. Eng. A, 2013, vol. 568, pp. 171–175.

    Article  Google Scholar 

  18. H. Aziz-Alizamini, and M. Militzer, WJ. Poole, Scr. Mater., 2007, vol.57, pp. 1065–68.

    Article  Google Scholar 

  19. M.D. Abramoff, P.J. Magelhaes, and S.J. Ram, Biophotonics Int., 2004, vol. 11, pp. 36–42.

    Google Scholar 

  20. Y. Ivanisenko, X.I. Sauvage, MacLaren and H.J. Fecht, Nano Sci. Technol., 2009, vol. 2, pp. 41–55.

    Google Scholar 

  21. G.R. Speich, V.A. Demarest, and R.L. Miller Metall. Trans. A, 1981, vol. 12A, pp. 1419–28

    Article  Google Scholar 

  22. M. Hillert, K. Nilsson, and L.E. Torndahl, J. Iron Steel Inst., 1971, vol.209, pp. 49–66.

    Google Scholar 

  23. N. Peranio, Y.J. Li, F. Roters, D. Raabe, Mater. Sci. Eng. A, 2010, vol. 527 pp. 4161–4168.

    Article  Google Scholar 

  24. J.Gautam, A. Miroux, J. Moerman, C. Barbatti, L.A.I. Kestens Mater. Sci. Forum 2011, vols. 702–703, pp. 778–81.

    Article  Google Scholar 

  25. R.K. Ray, J. Mater. Sci. Lett., 1985, vol. 4, pp. 67–70.

    Article  Google Scholar 

  26. D.K. Mondal and R.K. Ray, Mater. Sci. Eng. A, 1992, vol.158, pp. 147-56.

    Article  Google Scholar 

  27. R.A. Knot and J.W. Morris, AIME, 1979, pp. 1–19.

  28. M. Erdogan, Scripta Mat., 2003, vol.48, pp. 501–06.

    Article  Google Scholar 

  29. M. Erdogan, J. Mat. Sci., 2002, vol.37, pp. 3623–30.

    Article  Google Scholar 

  30. M. Erdogan, R. Priestner, Mat. Sci. Tech., 1999, vol.15, pp. 1273–84.

    Google Scholar 

  31. R.G. Davies, Metall. Trans. A, 1978, vol. 9A, pp. 671–79.

    Article  Google Scholar 

  32. R.G. Davies, Metall. Trans. A, 1979, vol. 10, pp. 1549–55.

    Article  Google Scholar 

  33. R.W.K. Honeycombe and H.K.D.H. Bhadeshia, Steels Microstructure and Properties, 2nd Edition. Edward Arnold: London, 1995.

    Google Scholar 

  34. G. Garmong and R.B. Thompson, Metall. Trans., 1973, vol. 4, pp. 863–73.

    Article  Google Scholar 

  35. A.R. Marder, Metall. Trans. A, 1981, vol. 12, pp. 1569–79.

    Article  Google Scholar 

  36. Z. Fan and A.P. Miodownik, Scr. Metall., 1993, vol. 28, pp. 895–900

    Article  Google Scholar 

  37. A. Bag, K.K. Ray, E.S. Dwarakadasa, Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1193–202.

    Article  Google Scholar 

  38. T. Hayashi, K. Nagai, T. Hanamura, Camp-ISIJ Int., 2000, vol. 13, pp. 473–76.

    Google Scholar 

  39. M. Mazinani, W.J. Poole, Metall. Mater. Trans. A, 2007, vol. 38A, p. 328.

    Article  Google Scholar 

  40. H. Saghafian, S.H. Kheirandish, Mater. Lett., 2007, vol. 61, pp. 3059–63.

    Article  Google Scholar 

  41. R. K. Ray, J. J. Jonas & R. E. Hook Int. Mater. Rev., 1994, vol. 39, pp. 139–72

    Article  Google Scholar 

  42. R.E. Reed-Hill, W.R Cribb, and S.N Monteiro Metall. Mater. Trans. B, 1973, vol. 4B, pp. 2665–67.

    Article  Google Scholar 

  43. H.W. Swift and J. Mech. Phys. Solids, 1 1952, vol. 1, pp. 1–18.

  44. Y. Tomita, K. Okabayashi. Metall. Trans. A, 1985, vol. 65, pp 865–72.

    Article  Google Scholar 

  45. V. Colla, M. De Sanctis, A. Dimatteo, G. Lovicu, A. Solina and R. Valentini, Metall. Mater. Trans. A, 2009, vol. 40A, pp 2557–67

    Article  Google Scholar 

  46. I. Timokhina, E. Pereloma and P. Hodgson, Metall. Mater. Trans. A, 2014, vol. 45A, pp 4247–55.

    Article  Google Scholar 

  47. A. Karmakar, S. Sivaprasad, S. Kundu and D. Chakrabarti, Metall. Mater. Trans. A, 2014, vol. 45 A, pp 1659–63.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of DST, Govt. of India through a sponsored project for the above research work. They are also thankful to Dr. Arnab Chattopadhyay formerly with TATA Steel, Jamshedpur, India for gifting the V-Nb microalloyed steels for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankaran.

Additional information

Manuscript submitted November 1, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papa Rao, M., Subramanya Sarma, V. & Sankaran, S. Microstructure and Mechanical Properties of V-Nb Microalloyed Ultrafine-Grained Dual-Phase Steels Processed Through Severe Cold Rolling and Intercritical Annealing. Metall Mater Trans A 48, 1176–1188 (2017). https://doi.org/10.1007/s11661-016-3889-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3889-5

Keywords

Navigation