Skip to main content
Log in

Correlation Between Microstructures and Tensile Properties of Strain-Based API X60 Pipeline Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The correlation between the microstructures and tensile properties of strain-based American Petroleum Institute (API) X60 pipeline steels was investigated. Eight types of strain-based API X60 pipeline steels were fabricated by varying the chemical compositions, such as C, Ni, Cr, and Mo, and the finish cooling temperatures, such as single-phase and dual-phase regions. In the 4N and 5C steels, the volume fractions of bainitic ferrite (BF) and the secondary phases increased with the increasing C and adding Cr instead of Ni. In the 5C and 6NC steels, the volume fractions of acicular ferrite (AF) and BF decreased with increasing C and adding Ni, whereas the volume fractions of polygonal ferrite (PF) and the secondary phases increased. In the 6NC and 6NM steels, the volume fraction of BF was increased by adding Mo instead of Cr, whereas the volume fractions of PF and the secondary phases decreased. In the steels rolled in the single-phase region, the volume fraction of polygonal ferrite ranged from 40 to 60 pct and the volume fraction of AF ranged from 20 to 40 pct. In the steels rolled in the dual-phase region, however, the volume fraction of PF was more than 70 pct and the volume fraction of AF was below 20 pct. The strength of the steels with a high volume fraction of AF was higher than those of the steels with a high volume fraction of PF, whereas the yield point elongation and the strain hardening exponent were opposite. The uniform elongation after the thermal aging process decreased with increasing volume fraction of PF, whereas the uniform elongation increased with increasing volume fraction of AF. The strain hardening exponent increased with increasing volume fraction of PF, but decreased with increasing volume fraction of AF and effective grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Denys: Pipeline Technology Conference, Elsevier, Amsterdam, 2000, vol. I & II, pp. 1-166.

    Google Scholar 

  2. J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi: Proc. 13th Int. Offshore Polar Eng. Conf., Honolulu, Hawaii, 2003, pp. 10–18.

  3. X.-L. Yang, Y.-B. Xu, X.-D. Tan, and D. Wu: Mater. Sci. Eng. A, 2014, vol. 607, pp. 53-62.

    Article  Google Scholar 

  4. Y. Shinohara, T. Hara, E. Tsuru, H. Asahi, Y. Terada, and N. Doi: Int. Conf. Offshore Mech. Arctic Eng., OMAE, Halkidiki, Greece, 2005, pp. 27–84.

  5. D.B. Lillig: Proc. 18th Int. Offshore Polar Eng. Conf., Vancouver, Canada, 2008, pp. 1–12.

  6. K. Nagai, Y. Shinohara, S. Sakamoto, E. Tsuru, and H. Asahi: Proc. 19th Int. Offshore Polar Eng. Conf., Osaka, Japan, 2009, pp. 56–60.

  7. G. Shigesato, Y. Shinohara, T. Hara, M. Sugiyama, and H. Asahi: Proc. 16th Int. Offshore Polar Eng. Conf., Lisbon, Portugal, 2007, pp. 2983–87.

  8. T. Hara, Y. Shinohara, Y. Terada, H. Asahi, and N. Doi: Proc. 19th Int. Offshore Polar Eng. Conf., Osaka, Japan, 2009, pp. 73–79.

  9. Y. Shinohara, T. Hara, E. Tsuru, and H. Asahi: Proc. 16th Int. Offshore Polar Eng. Conf., Lisbon, Portugal, 2007, pp. 2949–2954.

  10. J.H. Baek, Y.P. Kim, C.M. Kim, W.S. Kim, and C.S. Seok: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1473-79.

    Article  Google Scholar 

  11. T. Hara, Y. Shinohara, Y. Hattori, T. Muraki, and N. Doi: Proc. 21th Int. Offshore Polar Eng. Conf., ISOPE, Hawaii, USA, 2011, pp. 575–80.

  12. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth-Heinemann, Oxford, 1988, pp. 80-100.

    Book  Google Scholar 

  13. T. Sourmail and V. Smanio: Acta Mater., 2013, vol. 61, pp. 2639-48.

    Article  Google Scholar 

  14. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2013, vol. 51, pp. 2611-22.

    Article  Google Scholar 

  15. M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe, and G. Eggeler: Acta Mater., 2015, vol. 90, pp. 94-104.

    Article  Google Scholar 

  16. Z.H. Tang and W. Stumpf: Mater. Charact., 2008, vol. 59, pp. 717-28.

    Article  Google Scholar 

  17. V. Randle and O. Engler: Introduction to Texture Analysis, CRC Press, Boca Raton, FL, 2014, pp. 153–88.

  18. ASTM Standard E8/E8m-13a: Standard Test Methods for Tension Testing of Metallic Materials, ASTM, West Conshohocken, PA, 2013.

  19. S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 1493-1507.

    Article  Google Scholar 

  20. 20. T. Araki: Atlas for Bainitic Microstructures, ISIJ, Tokyo, 1992, pp. 1–100.

    Google Scholar 

  21. G. Krauss and S.W. Thompson: ISIJ Int., 1995, vol. 35, pp. 937-45.

    Article  Google Scholar 

  22. H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 2004, vol. A378, pp. 34-39.

    Article  Google Scholar 

  23. H. Ohtani, S. Okaguchi, Y. Fujishiro, and Y. Ohmori: Metall. Trans. A, 1990, vol. 21, pp. 877-88.

    Article  Google Scholar 

  24. M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2505-16.

    Article  Google Scholar 

  25. B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21, pp. 817-29.

    Article  Google Scholar 

  26. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, J. Cornide, and M.J. Santofimia: Scripta Mater., 2012, vol. 27, pp. 846-49.

    Article  Google Scholar 

  27. W.B. Lee, S.G. Hong, C.G. Park, K.H. Kim, and S.H. Park: Scripta Mater., 2000, vol. 43, pp. 319-24.

    Article  Google Scholar 

  28. H. Asahi: ISIJ Int., 2002, vol. 42, pp. 1150-55.

    Article  Google Scholar 

  29. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658-70.

    Article  Google Scholar 

  30. D. Hull and D.J. Bacon: Introduction to Dislocations, 5th Ed., Elsevier Ltd., Amsterdam, 2011, pp. 1-272.

    Book  Google Scholar 

  31. 31. A.H. Cottrell: Trans. Am. Inst. Mech. Eng.. 1958, vol. 212, pp. 192-203.

    Google Scholar 

  32. A. Ma, F. Roters, and D. Raabe: Acta Mater., 2006, vol. 54, pp. 2181-94.

    Article  Google Scholar 

  33. N.J. Kim and G. Thomas: Scripta Metall., 1984, vol. 18, pp. 817-20.

    Article  Google Scholar 

  34. R.T. Li, X.R. Zuo, Y.Y. Hu, Z.W. Wang, and D.X. Hu: Mater. Charact., 2011, vol. 62, pp. 801-06.

    Article  Google Scholar 

  35. L.P. Kubin and A. Mortensen: Scripta Mater., 2003, vol. 48, pp. 119-25.

    Article  Google Scholar 

  36. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: J. Mech. Phys. Solids, 1999, vol. 47, pp. 1239-63.

    Article  Google Scholar 

  37. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738-46.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Knowledge Economy under a Grant No. 100400-25, the Ministry of Land, the Infrastructure and Transport under a Grant No. 14IFIP-B067087-02-000000 and the 2013 Research Fund of University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yong Shin.

Additional information

Manuscript submitted July 16, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, H.K., Lee, D.H., Lee, S. et al. Correlation Between Microstructures and Tensile Properties of Strain-Based API X60 Pipeline Steels. Metall Mater Trans A 47, 2726–2738 (2016). https://doi.org/10.1007/s11661-016-3453-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3453-3

Keywords

Navigation