Skip to main content

Advertisement

Log in

Atom Probe Tomography Study of Multi-microalloyed Carbide and Carbo-Nitride Precipitates and the Precipitation Sequence in Nb-Ti HSLA Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Composition analysis of carbide and carbo-nitride precipitates was performed for two Nb-Ti microalloyed steels with yield strengths of 750 and 580 MPa using an atom probe study. In the high-Ti 750 MPa steel, Ti-rich (Ti,Nb)(C,N) and Ti-rich (Ti,Nb)(C) precipitates were observed. In the high-Nb 580 MPa steel, a Ti-rich (Ti,Nb)(C,N) precipitate and (Ti,Nb)(C) clusters were noted. These (Ti,Nb)(C) clusters in the high-Nb 580 MPa steel were smaller than the (Ti,Nb)(C) precipitates in high-Ti 750 MPa steel. In general, a larger number of precipitates were found in the high-Ti 750 MPa steel. This difference in the number density of the precipitates between the two steels is attributed to the difference in Ti content. Combining the atom probe tomography results and thermodynamic calculations, the precipitation sequence in these alloys was inferred to be the following: as the temperature decreases, TiN precipitates out of the solution with successive (Ti,Nb)(C,N) layers of varying composition forming on these Ti-rich precipitates. Once N is depleted from the solution, a second set of (Ti,Nb)(C) precipitates in a similar manner in the matrix and also onto the carbo-nitride phase. This observation is consistent with previous observations in high-strength low-alloy steels containing comparable amounts of only Nb. It was noted that the amount of Nb, Nb/(Nb + Ti), in the precipitates decreased from 0.20 to 0.04 with the size of the precipitate. We believe that this is due to the Nb supersaturation in the matrix when these precipitates nucleate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Gladman: The Physical Metallurgy of Microalloyed Steels, Maney, London, 2002.

    Google Scholar 

  2. M.P. Rao, V.S. Sarma, S. Sankaran, Materials Science and Engineering: A, 568 (2013) 171-175.

    Article  Google Scholar 

  3. M. Charleux, W.J. Poole, M. Militzer, A. Deschamps, Metallurgical and Materials Transactions A, 32A (2001) 1635-1647.

    Article  Google Scholar 

  4. E. Pereloma, I. Timokhina, K. Russell, M. Miller, Scripta Materialia, 54 (2006) 471-476.

    Article  Google Scholar 

  5. I.B. Timokhina, P.D. Hodgson, S.P. Ringer, R.K. Zheng, E.V. Pereloma, Scripta Materialia, 56 (2007) 601-604.

    Article  Google Scholar 

  6. H.-W. Yen, P.-Y. Chen, C.-Y. Huang, J.-R. Yang, Acta Materialia, 59 (2011) 6264-6274.

    Article  Google Scholar 

  7. R. Misra, K. Tenneti, G. Weatherly, G. Tither, Metallurgical and Materials Transactions A, 34 (2003) 2341-2351.

    Article  Google Scholar 

  8. A. Ruiz-Aparicio. Evolution of Microstructure in Nb-Bearing Microalloyed Steels Produced by the Compact Strip Production Process. Masters Thesis, Material Science and Engineering University of Pittsburgh, 2004, pp. 154.

  9. S. Shanmugam, M. Tanniru, R.D.K. Misra, D. Panda, S. Jansto, Materials Science and Technology, 21 (2005) 883-892.

    Article  Google Scholar 

  10. M. Tanniru, S. Shanmugam, R.D.K. Misra, D. Panda, S. Jansto, Materials Science and Technology, 21 (2005) 159-164.

    Article  Google Scholar 

  11. S. Shanmugam, M. Tanniru, R. Misra, D. Panda, S. Jansto, Materials science and technology, 21 (2005) 165-177.

    Article  Google Scholar 

  12. C.P. Reip, S. Shanmugam, R.D.K. Misra, Materials Science and Engineering: A, 424 (2006) 307-317.

    Article  Google Scholar 

  13. Z. Jia, R.D.K. Misra, R. O’Malley, S.J. Jansto, Materials Science and Engineering: A, 528 (2011) 7077-7083.

    Article  Google Scholar 

  14. Y. Li, D.N. Crowther, P.S. Mitchell, T.N. Baker, ISIJ International, 42 (2002) 636-644.

    Article  Google Scholar 

  15. R. Wang, C.I. Garcia, M. Hua, K. Cho, H. Zhang, A.J. DeArdo, ISIJ International, 46 (2006) 1345-1353.

    Article  Google Scholar 

  16. Y. Li, J.A. Wison, D.N. Crowther, P.S. Mitchell, A.J. Craven, T.N. Baker, ISIJ International, 44 (2004) 1093-1102.

    Article  Google Scholar 

  17. K.Y. Xie, L. Yao, C. Zhu, J.M. Cairney, C.R. Killmore, F.J. Barbaro, J.G. Williams, S.P. Ringer, Metallurgical and Materials Transactions A, 42 (2011) 2199-2206.

    Article  Google Scholar 

  18. P.J. Felfer, C.R. Killmore, J.G. Williams, K.R. Carpenter, S.P. Ringer, J.M. Cairney, Acta Materialia, 60 (2012) 5049-5055.

    Article  Google Scholar 

  19. T. Baker, Y. Li, J. Wilson, A. Craven, D. Crowther, Materials Science and Technology, 20 (2004) 720-730.

    Article  Google Scholar 

  20. R.D.K. Misra, H. Nathani, J.E. Hartmann, F. Siciliano, Materials Science and Engineering: A, 394 (2005) 339-352.

    Article  Google Scholar 

  21. M. Perez, E. Courtois, D. Acevedo, T. Epicier, P. Maugis, Philosophical Magazine Letters, 87 (2007) 645-656.

    Article  Google Scholar 

  22. Y. Chen, G. Tang, H. Tian, L. Feipeng, Y. Zhang, L. Wang, Z. Deng, D. Luo, Journal of Materials Science and Technology, 22 (2006) 759-762.

    Article  Google Scholar 

  23. A. Craven, K. He, L. Garvie, T. Baker, Acta Materialia, 48 (2000) 3857-3868.

    Article  Google Scholar 

  24. A. Craven, K. He, L. Garvie, T. Baker, Acta materialia, 48 (2000) 3869-3878.

    Article  Google Scholar 

  25. C.M. Enloe, K.O. Findley, C.M. Parish, M.K. Miller, B.C. De Cooman, J.G. Speer, Scripta Materialia, 68 (2013) 55-58.

    Article  Google Scholar 

  26. F. Danoix, E. Bémont, P. Maugis, D. Blavette, Advanced Engineering Materials, 8 (2006) 1202-1205.

    Article  Google Scholar 

  27. E. Bémont, E. Cadel, P. Maugis, D. Blavette, Surface and Interface Analysis, 36 (2004) 585-588.

    Article  Google Scholar 

  28. S. Mukherjee, I.B. Timokhina, C. Zhu, S.P. Ringer, P.D. Hodgson, Acta Materialia, 61 (2013) 2521-2530.

    Article  Google Scholar 

  29. J. Angseryd, F. Liu, H.O. Andren, S.S. Gerstl, M. Thuvander, Ultramicroscopy, 111 (2011) 609-614.

    Article  Google Scholar 

  30. O.C. Hellman, J.A. Vandenbroucke, J. Rusing, D. Isheim, D.N. Seidman, Microscopy and Microanalysis, 6 (2000) 437-444.

    Google Scholar 

  31. M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level, Springer, New York, 2012.

    Google Scholar 

  32. A.J. Breen, K.Y. Xie, M.P. Moody, B. Gault, H.-W. Yen, C.C. Wong, J.M. Cairney, S.P. Ringer, Microscopy and Microanalysis, 20 (2014) 1100-1110.

    Article  Google Scholar 

  33. B. Gault, F. Danoix, K. Hoummada, D. Mangelinck, H. Leitner, Ultramicroscopy, 113 (2012) 182-191.

    Article  Google Scholar 

  34. M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine, Y.-W. Chung, Acta Materialia, 73 (2014) 56-74.

    Article  Google Scholar 

  35. M.D. Mulholland, D.N. Seidman, Acta Materialia, 59 (2011) 1881-1897.

    Article  Google Scholar 

  36. J.J. Irani, R.W.K. Honeycombe, Journal of Iron and Steel Institute, 203 (1965) 826-833.

    Google Scholar 

  37. D. Raynor, Whiteman J.A., R.W.K. Honeycombe, Journal of Iron and Steel Institute, 204 (1966) 349-354.

    Google Scholar 

  38. D.H. Jack, K.H. Jack, Materials Science and Engineering, 11 (1973) 1-27.

    Article  Google Scholar 

  39. J.H. Jang, C.-H. Lee, Y.-U. Heo, D.-W. Suh, Acta Materialia, 60 (2012) 208-217.

    Article  Google Scholar 

  40. W.-B. Lee, S.-G. Hong, C.-G. Park, S.-H. Park, Metallurgical and materials transactions A, 33A (2002) 1689-1698.

    Article  Google Scholar 

  41. K.Y. Xie, T. Zheng, J.M. Cairney, H. Kaul, J.G. Williams, F.J. Barbaro, C.R. Killmore, S.P. Ringer, Scripta Materialia, 66 (2012) 710-713.

    Article  Google Scholar 

  42. F. Vurpillot, A. Bostel, D. Blavette, Applied Physics Letters, 76 (2000) 3127-3129.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Alabama Innovation Grant for their support. UA’s Central Analytical Facility operated under the Office for Sponsored Research is also acknowledged. Ms. Suzanne Kornegay and Mr. Tyler Kaub are acknowledged for their assistance in obtaining STEM–HAADF images and XRD scans, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Thompson.

Additional information

Manuscript submitted March 30, 2015.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, M., O’Malley, R. & Thompson, G.B. Atom Probe Tomography Study of Multi-microalloyed Carbide and Carbo-Nitride Precipitates and the Precipitation Sequence in Nb-Ti HSLA Steels. Metall Mater Trans A 47, 1984–1995 (2016). https://doi.org/10.1007/s11661-016-3398-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3398-6

Keywords

Navigation