Skip to main content
Log in

Surface Selective Oxidation of Sn-Added CMnSi TRIP Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 24 February 2016

Abstract

The influence of the addition of Sn on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. A reference TRIP steel and TRIP steels containing Sn in the range of 0.05 to 1 wt pct were intercritically annealed at 1093 K (820 °C) in an N2+ 5 pct H2 gas atmosphere with a dew point of −60 °C. The thin-film oxides formed on the surface of the Sn-added CMnSi TRIP steel were investigated using transmission electron microscopy and 3-dimensional atom probe tomography. The addition of Sn (≥0.05 wt pct) changed the morphology of the xMnO·SiO2 surface oxides from a continuous film morphology to a lens-shaped island morphology. It also suppressed the formation of the Mn-rich oxides of MnO and 2MnO·SiO2. The changes in the morphology and chemistry of the surface oxides were clearly related to the surface segregation of Sn, which appeared to result in a decrease of the oxygen permeability at the surface. The formation of lens-shaped oxides improved the wettability of the CMnSi TRIP steel surface by the molten Zn. The improved wetting effect was attributed to an increased area fraction of the surface where the oxide layer was thinner. This enabled a direct, unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer in the initial stages of the hot dipping. The addition of a small amount of Sn was also found to decrease significantly the density of Zn-coating defects on CMnSi TRIP steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 1. E.M. Bellhouse, J.R. McDermid: Metallurgical and Materials Transactions A, 2010, vol. 41, pp. 1539-53.

    Article  Google Scholar 

  2. 2. M.S. Kim, J.H. Kwak, J.S. Kim, Y.H. Liu, N. Gao, N.Y. Tang: Metallurgical and Materials Transactions A, 2009, vol. 40, pp. 1903-10.

    Article  Google Scholar 

  3. L. Cho, S.J. Lee, M.S. Kim, Y.H. Kim, B.C. De Cooman: Metallurgical and Materials Transactions A, 2013, vol. 44, pp. 362-71.

    Article  Google Scholar 

  4. 4. H. Liu, Y. He, S. Swaminathan, M. Rohwerder, L. Li: Surface and Coatings Technology, 2011, vol. 206, pp. 1237-43.

    Article  Google Scholar 

  5. 5. H.G. Lee, Chemical Thermodynamics for Metals and Materials, Imperial College Press, London, UK, 1999.

    Book  Google Scholar 

  6. 6. Z.T. Zhang, I.R. Sohn, F.S. Pettit, G.H. Meier, S. Sridhar: Metallurgical and Materials Transactions B, 2009, vol. 40, pp. 567-84.

    Article  Google Scholar 

  7. 7. E. Clauberg, C. Uebing, H. Grabke: Applied Surface Science, 1999, vol. 143, pp. 206-14.

    Article  Google Scholar 

  8. 8. Y.L. Zhang, Y.Y. Zhang, F.H. Yang, Z.T. Zhang: Journal of Iron and Steel Research, International, 2013, vol. 20, pp. 39-56.

    Article  Google Scholar 

  9. 9. G. Lyudkovsky: IEEE Transactions on Magnetics 1986, vol. 22, pp. 508-10.

    Article  Google Scholar 

  10. 10. L. Cho, M.S. Kim, Y.H. Kim, B.C. De Cooman: Metallurgical and Materials Transactions A, 2014, vol. 45, pp. 4484-98.

    Article  Google Scholar 

  11. 11. D. Melford: Philosophical Transactions of the Royal Society A, 1980, vol. 295, pp. 89-103.

    Article  Google Scholar 

  12. 12. D. Huin, P. Flauder, J.B. Leblond: Oxid Met, 2005, vol. 64, pp. 131-67.

    Article  Google Scholar 

  13. 13. K.K. Wang, C.W. Hsu, L. Chang, D. Gan, T.R. Chen, K.C. Yang: Journal of The Electrochemical Society, 2012, vol. 159, pp. 561-70.

    Article  Google Scholar 

  14. 14. J.B. Brunac, D. Huin, J.B. Leblond: Oxid Met, 2010, vol. 73, pp. 565-89.

    Article  Google Scholar 

  15. 15. H. Viefhaus, M. Rüsenberg: Surface Science, 1985, vol. 159, pp. 1-23.

    Article  Google Scholar 

  16. 16. K. Kumar, P. Wollants, L. Delaey: Calphad, 1996, vol. 20, pp. 139-49.

    Article  Google Scholar 

  17. 17. T. Okoshi: Applied optics, 1971, vol. 10, pp. 2284-91.

    Article  Google Scholar 

  18. 18. R.E. Galindo, E. Forniés, J. Albella: Journal of Analytical Atomic Spectrometry, 2005, vol. 20, pp. 1108-15.

    Article  Google Scholar 

  19. 19. V. Hoffmann, R. Dorka, L. Wilken, V.D. Hodoroaba, K. Wetzig: Surface and Interface Analysis, 2003, vol. 35, pp. 575-82.

    Article  Google Scholar 

  20. 20. L. Yin, S. Sridhar: Metallurgical and Materials Transactions B, 2010, vol. 41, pp. 1095-107.

    Article  Google Scholar 

  21. 21. H.J. Grabke: ISIJ International, 1989, vol. 29, pp. 529-38.

    Article  Google Scholar 

  22. 22. H.J. Grabke: Kovine, Zlitine, Tehnologije, 1996, vol. 30, pp. 483-95.

    Google Scholar 

  23. 23. N. Kaiser: Applied Optics, 2002, vol. 41, pp. 3053-60.

    Article  Google Scholar 

  24. 24. A.J. Kinloch, Adhesion and Adhesives-Science and Technology, Chanpman and Hall, London, UK, 1987, pp. 30.

    Book  Google Scholar 

  25. 25. S. Brunauer, D.L. Kantro, C.H. Weise: Canadian Journal of Chemistry, 1956, vol. 34, pp. 1483-96.

    Article  Google Scholar 

  26. 26. L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollar: Surface Science, 1998, vol. 411, pp. 186-202.

    Article  Google Scholar 

  27. 27. R.W. Olesinski, G.J. Abbaschian: Journal of Phase Equilibria, 1984, vol. 5, pp. 273-76.

    Google Scholar 

  28. 28. Y.F. Gong, H.S. Kim, B.C. De Cooman: ISIJ International, 2008, vol. 48, pp. 1745-51.

    Article  Google Scholar 

  29. 29. L. Cho, B.C. De Cooman: Steel Research International, 2012, vol. 83, pp. 391-97.

    Article  Google Scholar 

  30. 30. J.H. Lee, J.C. Park, S.H. Jeon: Metallurgical and Materials Transactions B, 2009, vol. 40, pp. 1035-40.

    Article  Google Scholar 

  31. 31. J.H. Lee, J.C. Park, Y.K. Kim, S.H. Jeon: Journal of Materials Science, 2010, vol. 45, pp. 2112-17.

    Article  Google Scholar 

  32. 32. R. Kavitha, J.R. McDermid: Surface and Coatings Technology, 2012, vol. 212, pp. 152-58.

    Article  Google Scholar 

  33. 33. H. Liu, Y. He, L. Li: Applied Surface Science, 2009, vol. 256, pp. 1399-403.

    Article  Google Scholar 

  34. N. Gao, D.Y.H. Liu, N. Tang, R.B. Park, and M.S. Kim: in Proceedings of the 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet (GALVATECH 2011), Associazione Italiana di Metallurgia, Genova, Italy, 2011, pp. 123–30.

  35. 35. J. Takada, M. Adachi: Journal of Materials Science, 1986, vol. 21, pp. 2133-37.

    Article  Google Scholar 

  36. 36. H. Oikawa: Technology Reports, Tohoku University, 1983, vol. 48, pp. 76-77.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of Dr. Myung Soo Kim and Dr. Young Ha Kim from the POSCO Technical Research Laboratories, Gwangyang, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno C. De Cooman.

Additional information

Manuscript submitted July 10, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, L., Seo, E.J., Jung, G.S. et al. Surface Selective Oxidation of Sn-Added CMnSi TRIP Steel. Metall Mater Trans A 47, 1705–1719 (2016). https://doi.org/10.1007/s11661-016-3331-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3331-z

Keywords

Navigation