Skip to main content

Advertisement

Log in

A High-Strength High-Ductility Ti- and Mo-Bearing Ferritic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study reports the development of a Ti- and Mo-bearing ferritic steel precipitation-strengthened by nanometer-sized carbides. The steel showed an ultimate tensile strength of 995 MPa, a tensile elongation of 20 pct, and a hole-expanding ratio of 44 pct. The precipitation of nanometer-sized carbides in this steel during isothermal transformation at 873 K, 898 K, and 973 K (600 °C, 625 °C, and 700 °C) for 60 minutes was investigated in detail. The contributions of various strengthening mechanisms were analyzed, and the maximum contribution from the nanometer-sized carbide precipitates was estimated to be about 430 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Huang, A. Zhao, J. He, X. Wang, Z. Wang, and L. Q: Int. J. Min. Met. Mater., 2013, vol. 20, pp. 1155–63.

    Article  Google Scholar 

  2. Y. Huang, A. Zhao, Z. Mi, H. Jing, W. Li, Y. Hui: J. Iron Steel Res. Int., 2013, vol. 11, pp. 111–17.

    Article  Google Scholar 

  3. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda: Isij Int, 2004, vol. 11, pp. 1945–51.

    Article  Google Scholar 

  4. C.I. Garcia, K. Cho, K. Redkin, A.J. Deardo, S. Tan, M. Somani, L.P. Karjalainen: Isij Int, 2011, vol. 6, pp. 969–74.

    Article  Google Scholar 

  5. J.A. Ronevich, J.G. Speer, D.K. Matlock: SAE Int. J. Mater. Manuf., 2010, vol. 1, pp. 255–67.

    Article  Google Scholar 

  6. F.Y.K.S. Seto Kazuhiro: JFE Technical Report, 2007, pp. 19–25.

  7. K. Kimijima and T. Soshiroda: Google Patents, 2010.

  8. K. Mori, Y. Abe, Y. Suzui: J. Mater. Process. Technol., 2010, vol. 4, pp. 653–59.

    Article  Google Scholar 

  9. R. Bengochea, B. Lopez, and I. Gutierrez: ISIJ Int., 1999, pp. 583–91.

  10. H. Beladi, G.L. Kelly, P.D. Hodgson: Metall. Mater. Trans. A, 2007, vol. 3, pp. 450–63.

    Article  Google Scholar 

  11. S. Mukherjee, I.B. Timokhina, C. Zhu, S.P. Ringer, P.D. Hodgson: Acta Mater, 2013, vol. 7, pp. 2521–30.

    Article  Google Scholar 

  12. V. Schwinn, J. Bauer, P. Flüss, H.J. Kirsch, E. Amoris: Revue de Metallurgie, 2011, vol.5, pp.283.

    Article  Google Scholar 

  13. H. Yao, Z. Zhengzhi, Z. Aimin, S. Wei: J Univ Sci Technol B, 2013, vol. 07, pp. 882–89.

    Google Scholar 

  14. H. Yen, P. Chen, C. Huang, J. Yang: Acta Mater, 2011, vol. 16, pp. 6264–74.

    Article  Google Scholar 

  15. R. Okamoto, A. Borgenstam, J. AA Gren: Acta Mater., 2010, vol. 14, pp. 4783–90.

    Article  Google Scholar 

  16. N. Balliger, R. Honeycombe: Metall. Mater. Trans. A, 1980, vol. 3, pp. 421.

    Article  Google Scholar 

  17. A.D. Batte, R. Honeycombe: Metal Science, 1973, vol. 1, pp. 160–68.

    Article  Google Scholar 

  18. Z. Wang, X. Mao, Z. Yang, X. Sun, Q. Yong, Z. Li, and Y. Weng: Mater. Sci. Eng. A, 2011, pp. 459–67.

  19. H. Bhadeshia: Phys. Status Solidi (A), 1982, vol. 2, pp. 745–50.

  20. A. Nartowski, I. Parkin, A. Craven: J. Mater. Chem., 1999, vol. 6, pp. 1275–81.

    Article  Google Scholar 

  21. S. Lee, Y. Lee, W. Jung, J. Choi: Metals and Materials International, 2009, vol.5, pp.797-801.

    Article  Google Scholar 

  22. S. Chatterjee, H. Bhadeshia: Mater Sci Technol. Lond., 2007, vol. 5, pp. 606–09.

    Article  Google Scholar 

  23. F.B. Pickering: Physical Metallurgy and the Design of Steels, Applied Science Publishers London, 1978.

  24. R. Wang, C.I. Garcia, M. Hua, K. Cho, H. Zhang, A.J. Deardo: ISIJ Int., 2006, vol. 9, pp. 1345–53.

    Article  Google Scholar 

  25. Q.L. Yong. Secondary Phases in Steels. Metall. Industry Press, Beijing, 2006.(in chinese)

    Google Scholar 

  26. G. Jha, S. Das, A. Lodh, and A. Haldar: Mater. Sci. Eng. A., 2012, vol. 0, pp. 457–63.

  27. K. Takeda, N. Nakada, T. Tsuchiyama, S. Takaki: ISIJ Int., 2008, vol. 8, pp. 1122–25.

    Article  Google Scholar 

  28. H. Yao, Z. Zhengzhi, Z. Aimin: J Univ Sci Technol B, 2015, vol. 37, pp. 896–904.

    Google Scholar 

  29. T. Gladman, D. Dulieu, and I.D. McIvor: Proc. Conf. Microalloying, vol. 75, 1977.

  30. R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, A. Charai: Acta Mater, 1999, vol. 12, pp. 3475–81.

    Article  Google Scholar 

  31. Y.F. Shen, C.M. Wang, X. Sun: Mater. Sci. Eng., A, 2011, vol. 28, pp. 8150–56.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the National Natural Science Foundation of China (No. 51271035) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Huang.

Additional information

Manuscript submitted October 28, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhao, A., Wang, X. et al. A High-Strength High-Ductility Ti- and Mo-Bearing Ferritic Steel. Metall Mater Trans A 47, 450–460 (2016). https://doi.org/10.1007/s11661-015-3232-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3232-6

Keywords

Navigation