Skip to main content
Log in

On Macrosegregation

  • Symposium: ICASP-4 (International Conference on Advanced Solidification Processing)
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Macrosegregations, namely compositional inhomogeneities at a scale much larger than the microstructure, are typically classified according to their metallurgical appearance. In ingot castings, they are known as ‘A’ and ‘V’ segregation, negative cone segregation, and positive secondary pipe segregation. There exists ‘inverse’ segregation at casting surfaces and ‘centerline’ segregation in continuously cast slabs and blooms. Macrosegregation forms if a relative motion between the solute-enriched or -depleted melt and dendritic solid structures occurs. It is known that there are four basic mechanisms for the occurrence of macrosegregation. In the recent years, the numerical description of the combination of these mechanisms has become possible and so a tool has emerged which can be effectively used to get a deeper understanding into the process details which are responsible for the formation of the above-mentioned different macrosegregation appearances. Based on the most sophisticated numerical models, we consequently associate the four basic formation mechanisms with the physical phenomena happening during (i) DC-casting of copper-based alloys, (ii) DC-casting of aluminum-based alloys, (iii) continuous casting of steel, and (iv) ingot casting of steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. In the present discussion formation of shrinkage porosity is neglected.

References

  1. W. Kurz and D.J. Fisher: Fundamental of Solidification, 4th ed., Trans. Tech. Publ., Aedermansdorf, 1998.

    Google Scholar 

  2. J.A. Dantzig and M. Rappaz: Solidification, EPFL, London, 2009.

    Book  Google Scholar 

  3. R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman: Prog. Mater. Sci., 2008, vol. 53, pp. 421–80.

    Article  Google Scholar 

  4. J.S. Kirkaldy and W.V. Youdelis: Trans. Metall. Soc. AIME, 1958, vol. 212, pp. 833–40.

    Google Scholar 

  5. M.C. Flemings and G.E. Nereo: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 1449–61.

    Google Scholar 

  6. M.C. Flemings, R. Mehrabian, and G.E.Nereo: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 41–49.

    Google Scholar 

  7. M.C. Flemings and G.E. Nereo: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 50–55.

    Google Scholar 

  8. C. Beckermann: Flemings Symp. Boston, MA, 2000.

  9. G.H. Gulliver: Metallic Alloys, Griffin, 1922.

  10. E. Scheil: Zeitschrift Für Met., 1942, vol. 34, pp. 70–72.

    Google Scholar 

  11. H.D. Brody and M.C. Flemings: Trans. Metall. Soc. AIME, 1966, vol. 236, p. 615.

    Google Scholar 

  12. T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12, p. 965.

    Article  Google Scholar 

  13. A. Roosz: Personal Communication, 2014.

  14. N.B. Vaughan: Journal, Inst. Met., 1937, vol. 61, p. 35.

    Google Scholar 

  15. M. Gruber-Pretzler, F. Mayer, M. Wu, A. Ludwig, J. Riedle, and U. Hofmann: in 6th Int. Copper-Cobre Conf., (Cu2007), Vol 1, Toronto, 2007, pp. 265–79.

  16. A. Ludwig, M. Gruber-Pretzler, M. Wu, A. Kuhn, and J. Riedle: Fluid Dyn. Mater. Process., 2005, vol. 1, pp. 285–300.

    Google Scholar 

  17. M. Gruber-Pretzler, F. Mayer, M. Wu, A. Ludwig, H.A. Kuhn, and J. Riedle: in 6th Int. Conf. Model. Cast. Weld. Adv. Solidif. Process. (MCWASP VI), C.A. Gandin and M. Bellet, eds., TMS Publication, Warrendale, 2006, pp. 799–806.

  18. A. Ludwig, M. Gruber-Pretzler, F. Mayer, A. Ishmurzin, and M. Wu: Mater. Sci. Eng. A, 2005, vol. 413-4, pp. 485–89.

    Article  Google Scholar 

  19. A. Ishmurzin, M. Gruber-Pretzler, F. Mayer, M. Wu, and A. Ludwig: Int. J. Mater. Res., 2008, vol. 99, pp. 618–25.

    Article  Google Scholar 

  20. J. Hao, M. Grasser, M. Wu, and A. Ludwig: Adv. Mater. Res., 2011, vol. 155, pp. 1401–4.

    Google Scholar 

  21. J. Hao, M. Grasser, M. Wu, A. Ludwig, J. Riedle, and R. Eberle: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 27, p. 012015.

    Article  Google Scholar 

  22. D.G. Eskin, J. Zuidema, V.I. Savran, and L. Katgerman: Mater. Sci. Eng. A, 2004, vol. 384, pp. 232–44.

    Article  Google Scholar 

  23. Q. Du, D.G. Eskin, and L. Katgerman: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 144–50.

    Article  Google Scholar 

  24. R. Nadella, D.G. Eskin, and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 39, pp. 450–61.

    Google Scholar 

  25. D.G. Eskin, Q. Du, and L. Katgerman: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1206–12.

    Article  Google Scholar 

  26. K. Miyazawa and K. Schwerdtfeger: Arch. Eisenhüttenwes., 1981, vol. 52, pp. 415–22.

    Google Scholar 

  27. T Kajitani, J Drezet, and M Rappaz: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1479–91.

    Article  Google Scholar 

  28. V. Fachinotti, S. Le Corre, N. Triolet, M. Bobadilla, and M. Bellet: Int. J. Numer. Methods Eng., 2006, vol. 67, pp. 1341–84.

    Article  Google Scholar 

  29. M. Bellet: in 9th Int. Conf. Numer. Methods Ind. Form. Process., J.M.A. Cesar de Sa and A.D. Santos, eds., American Institute of Physics, Porto, 2007, pp. 1369–74.

  30. F. Mayer, L. Könözsy, M. Wu, and A. Ludwig: in 2nd Int. Conf. Simul. Model. Met. Process. Steelmak. (STEELSIM 2007), A. Ludwig, ed., ASMET, Graz, 2007, pp. 265–70.

  31. F. Mayer, M. Wu, and A. Ludwig: in 12th Int. Conf. Model. Cast. Welding, Adv. Solidif. Process. (MWASP XII), S.L. Cockcroft and D.M. Maijer, eds., TMS Publication, Vancouver, 2009, pp. 279–86.

  32. F. Mayer, M. Wu, and A. Ludwig: Steel Res. Int., 2010, vol. 81, pp. 660–67.

    Article  Google Scholar 

  33. M. Wu, J. Domitner, and A. Ludwig: Metall. Mater. Trans. A, 2012, vol. 43, pp. 945–64.

    Article  Google Scholar 

  34. J. Domitner, M. Wu, F. Mayer, A. Ludwig, B. Kaufmann, J. Reiter, and T. Schaden: in Eur. Contin. Cast. Conf. (ECCC 2011), Düsseldorf, 2011, pp. S6.1–S6.8.

  35. M. Wu, J. Domitner, F. Mayer, and A. Ludwig: in 4th. Int. Conf. Simul. Model. Met. Process. Steelmak. (STEELSIM 2011), 2011, pp. 1–11.

  36. J. Domitner, M. Wu, A. Kharicha, A. Ludwig, B. Kaufmann, J. Reiter, and T. Schaden: Metall. Mater. Trans. A, 2013, vol. 45, pp. 1415–34.

    Google Scholar 

  37. J. Domitner, M. Wu, and A. Ludwig: Steel Res. Int., 2014, vol. 85, pp. 1–5.

    Article  Google Scholar 

  38. Iron R: J. Iron Steel Inst., 1926, vol. 113, pp. 39–176.

    Google Scholar 

  39. A. Hultgren: J. Iron Steel Inst., 1929, vol. 120, pp. 69–125.

    Google Scholar 

  40. E. Marburg: J. Met., 1953, vol. 5, pp. 157–72.

    Google Scholar 

  41. B. Gray: J. Iron Steel Inst., 1956, vol. 182, pp. 366–74.

    Google Scholar 

  42. C. Roques, P. Martin, Ch. Dubois, and P. Bastien: Rev. Met., 1960, vol. 57, pp. 1091–1103.

    Google Scholar 

  43. M.C. Flemings: Metall. Trans., 1974, vol. 5, pp. 2121–34.

    Article  Google Scholar 

  44. M.C. Flemings: Scand. J. Met., 1976, vol. 5, pp. 1–15.

    Google Scholar 

  45. A. Hultgren: Scand. J. Met., 1973, vol. 2, pp. 217–27.

    Google Scholar 

  46. G. Ebneth, W. Haumann, K. Rüttiger, and F. Oeters: Arch. Eisenhüttenwes., 1974, vol. 45, pp. 353–59.

    Google Scholar 

  47. Y-K. Chuang and K. Schwerdtfeger: Arch. Eisenhüttenwes., 1975, vol. 46, pp. 303–10.

    Google Scholar 

  48. H.W. den Hartog, J.M. Rabenberg, and R. Pesch: Met. Soc. B., 1975, vol. 158, pp. 200–212.

    Google Scholar 

  49. H. Fredriksson and O. Nilsson: Met. Trans. B, 1978, vol. 9, pp. 111–20.

    Article  Google Scholar 

  50. J. Campbell: Castings, 2nd ed., Butterworth, Amsterdam, 1991.

    Google Scholar 

  51. R. Mehrabian and M.C. Flemings: Metall. Trans. B, 1970, vol. 1, pp. 455–64.

    Article  Google Scholar 

  52. T. Fujii, D.R. Poirier, and M.C. Flemings: Met. Trans. B, 1979, vol. 10, pp. 331–39.

    Article  Google Scholar 

  53. M. Wu, A. Ludwig, A. Bührig-Polaczek, M. Fehlbier, and P. Sahm: Int. J. Heat Mass Transf., 2003, vol. 46, pp. 2819–32.

    Article  Google Scholar 

  54. P. Rouxa, B. Goyeau, D. Gobin, F. Fichot, and M. Quintard: Int. J. Heat Mass Transf., 2006, vol. 49, pp. 4496–4510.

    Article  Google Scholar 

  55. M.C. Schneider and C. Beckermann: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2373–88.

    Article  Google Scholar 

  56. J. P. Gu and C. Beckermann: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1357–66.

    Article  Google Scholar 

  57. H. Combeau, M. Založnik, S. Hans, and P.E. Richy: Metall. Mater. Trans. B, 2009, vol. 40, pp. 289–304.

    Article  Google Scholar 

  58. M. Zaloznik and H. Combeau: Int. J. Therm. Sci., 2010, vol. 49, pp. 1500–1509.

    Article  Google Scholar 

  59. M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1613–31.

    Article  Google Scholar 

  60. M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1465–75.

    Article  Google Scholar 

  61. J. Li, M. Wu, A. Ludwig, and A. Kharicha: Int. J. Heat Mass Transf., 2014, vol. 72, pp. 668–79.

    Article  Google Scholar 

  62. G. Lesoult: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 19–29.

    Article  Google Scholar 

  63. K. Suzuki and T. Miyamoto: Trans. Iron Steel Inst. Jpn., 1978, vol. 18, pp. 80–89.

    Google Scholar 

  64. K. Suzuki and T. Miyamoto: Trans. Iron Steel Inst. Jpn., 1980, vol. 20, pp. 375–83.

    Google Scholar 

  65. J.J. Moore and N.A. Shah: Int. Met. Rev., 1983, vol. 28, pp. 338–56.

    Article  Google Scholar 

  66. A. Ludwig, A. Kharicha, and M. Wu: Metall. Mater. Trans. B, 2014, vol. 45, pp. 36–43.

    Article  Google Scholar 

Download references

Acknowledgments

This report is based on a plenary talk given at the 4th Int. Conf. on Advances in Solidification Processes (ICASP-4), July 2014 in Beaumont, Old Winsor, UK. The authors are grateful to the conference chairmen for being invited and getting the opportunity to present this overview on macrosegregation. We further acknowledge the financial support provided by the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development within the framework of the Christian Doppler Laboratory for Advanced Process Simulation of Solidification and Melting. In addition, we acknowledge the cooperation of J. Domitner, F. Mayer, M. Grasser, and J. Li, J. Hao in various projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Ludwig.

Additional information

Manuscript submitted September 20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, A., Wu, M. & Kharicha, A. On Macrosegregation. Metall Mater Trans A 46, 4854–4867 (2015). https://doi.org/10.1007/s11661-015-2959-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2959-4

Keywords

Navigation