Skip to main content
Log in

DICTRA Simulation of Holding Time Dependence of NbC Size and Experimental Study of Effect of NbC on Austenite Grain Growth

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of austenitizing temperature and holding time on the prior austenite grain size was examined in both the transverse and the longitudinal directions of the samples that were made of the offshore structure steel EQ70. The grain size of the prior austenite was measured by using the linear intercept method. The equilibrium phase diagram was used to explain the abnormal grain growth. The equilibrium precipitation of steel EQ70 was calculated by Thermo-Calc software package, and the relationship between NbC size and the holding time was simulated based on DICTRA. The experimental results show that the prior austenite grain size is initially insensitive to increasing the austenitizing temperature from 1123 K (850 °C) with holding times from 1 to 6 hours, and presents a sudden growth at approximately 1373 K (1100 °C). The growth of the austenite grain size is also insensitive to increasing the holding time while the soaking temperature is lower than 1223 K (950 °C) or higher than 1373 K (1100 °C), and a sudden growth of grains takes place as the holding time is prolonged from 4 to 5 hours at the temperatures between 1273 K and 1323 K (1000 °C and 1050 °C). The results of DICTRA simulation and TEM observation confirm that the abnormal grain growth behavior at 1373 K (1100 °C) was influenced by coarsening of NbC with radius larger than the average and full dissolution of AlN and almost full dissolution of NbC with radius equal to or less than the average, while the same behavior between 1223 K and 1273 K (950 °C and 1000 °C) was caused by coarsening of NbC with radius larger than the average and the full dissolution of AlN but partial dissolution of NbC with radius equal to or less than the average. The present experimental and simulation results can provide a useful reference for determining the austenitizing parameters of steel EQ70.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.S. Kang, A. Bolouri and C.G. Kang: J. Mat. Des. Appl., 2012, vol. 226, pp. 242-251.

    Google Scholar 

  2. I. Rak, V. Gliha and oçak, Metall. Mater. Trans. A, 1997, vol. 28A, pp. 199-206.

    Article  Google Scholar 

  3. Y.L. Zhou, J. Chen, and Z.Y. Liu, J. Iron Steel Res. Int., 2013, vol. 20, pp. 66-73.

    Article  Google Scholar 

  4. B. Hwang and C.G. Lee, Mater. Sci. Eng. A, 2010, vol. 527, pp. 4341-4346.

    Article  Google Scholar 

  5. S. Maropoulos, S. Karagiannis and N. Ridley, Mater. Sci. Eng. A, 2008, vol. 183, pp. 735-739.

    Article  Google Scholar 

  6. C.S. Lee, K.A. Lee, D.M. Li, S.J. Yoo and W.J. Nam, Mater. Sci. Eng. A, 1998, vol. 241, pp. 30-37.

    Article  Google Scholar 

  7. C.M. Sellars and J.A. Whiteman, Met. Sci., 1979, vol. 13, pp. 187-194.

    Article  Google Scholar 

  8. T. Gladman and F.B. Pickering, J. Iron Steel Inst., 1967, vol. 205, pp. 653-664.

    Google Scholar 

  9. W.J. Nam, C.S. Lee and D.Y. Ban, Mater. Sci. Eng., A, 2000, vol. 289, pp. 8-17.

    Article  Google Scholar 

  10. J.R.Wilcox and R.W.K. Honeycombe, Mater. Sci. Technol., 1987, vol.3, pp. 849-854.

    Article  Google Scholar 

  11. H.J. Kestenbach, J.A. Rodrigues and J.R. Dermonde, Mater. Sci. Technol., 1989, vol. 5, pp. 29-35.

    Article  Google Scholar 

  12. R. Coladas, J. Masounave, G. Guérin and J.P. Baïlon, Met. Sci., 1977, vol. 11, pp. 509-516.

    Article  Google Scholar 

  13. 13 L.J. Cuddy and J.C. Raley, Metall. Trans. A, 1983, vol. 14A, pp. 1989-1995.

    Article  Google Scholar 

  14. G.R. Speich, L.J. Cuddy, C.R. Gordon, and A.J. DeArdo: in Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp. 341–89.

  15. M. Militzer, A. Giumelli, E.B. Hawbolt and T.R. Meadowcroft, Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3399-3409.

    Article  Google Scholar 

  16. C.R. Hutchinson, H.S. Zurob, C.W Sinclair and Y.J.M. Brechet, Scripta Mater., 2008, vol. 59, pp. 635-637.

    Article  Google Scholar 

  17. D.S. Martín, F.G. Caballero, C. Capdevila and C.G.D Andrés, Mater. Trans., 2004, vol. 45, pp. 2797-2804.

    Article  Google Scholar 

  18. S.F. Tao, F.M. Wang, G.L. Sun, C.R. Li, and Q. Yan: in Characterization of Minerals, Metals, and Materials, J.S. Carpenter, C.G. Bai, J.Y. Hwang, S. Ikhmayies, B.W. Li, S.N. Monteiro, Z.W. Peng, and M.M. Zhang, eds., Wiley, Hoboken, NJ, 2014, pp. 191–98.

  19. F.G. Caballero, C. Capdevila and C.G.D Andrés, J. Mater. Sci., 2002, vol. 37, pp. 3533-3540.

    Article  Google Scholar 

  20. L. Gavard, H.K.D.H. Bhadeshia, D.J.C. MacKay and S. Suzuki, Mater. Sci. Technol., 1996, vol. 12, pp. 453-463.

    Article  Google Scholar 

  21. K.J. Irvine, F.B. Pickering and T. Gladman. J. Iron Steel Inst., 1967, vol. 205, pp.161-182.

    Google Scholar 

  22. E.J. Palmiere, C.I. Garcia and A.J. Deardo. Metall. Mater. Trans. A, 1994, vol. 25, pp.277-286.

    Article  Google Scholar 

  23. DICTRA Version 25 User’s Guide, Thermo-Calc Software AB, Stockholm, 2010.

  24. J. Ågren and G.P. Vassilev, Mater. Sci. Eng., 1984, vol. 64, pp. 95-103.

    Article  Google Scholar 

  25. J. Ågren, Mater. Sci. Eng.,1982, vol. 55, pp. 135-141.

    Article  Google Scholar 

  26. J. Ågren, Scand. J. Metall., 1990, vol. 19, pp. 2-8.

    Google Scholar 

  27. Z.K. Liu, L. Höglund, B. Jönsson and J. Ågren, Metall. Trans. A, 1991, vol. 22A, pp. 1745-1752.

    Article  Google Scholar 

  28. J. Ågren, H. Abe, T. Suzuki and Y. Sakuma, Metall. Trans. A, 1986, vol. 17A, pp. 617-620.

    Article  Google Scholar 

  29. Z.K. Liu and J. Ågren, Metall. Trans. A, 1991, vol. 22A, pp. 1753-1759.

    Article  Google Scholar 

  30. A. Bjärbo and M. Hättestrand, Metall. Mater. Trans. A, 2001, vol. 32A, pp. 19-27.

    Article  Google Scholar 

  31. G. Ghosh and G.B. Olson, Acta Metall., 2002, vol. 50, pp. 2099-2119.

    Google Scholar 

  32. J.O. Andersson and J. Ågren, J. Appl. Phys., 1992, vol. 72, pp. 1350-1355.

    Article  Google Scholar 

  33. A. Borgenstam, A. Engstrom, L. Hoglund and J. Agren, J. Phase Equilib., 2000, vol.21, pp. 269-280.

    Article  Google Scholar 

  34. X. Xiao, G.Q. Liu, B.F. Hu, J.S. Wang and W.B. Ma, J. Mater. Sci., 2013, vol. 48, pp. 5410-5419.

    Article  Google Scholar 

  35. Q.L. Yong, Second Phases in Structural Steel. First ed., Metallurgical Industry Press, Beijing, 2006, pp. 44-45.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51174020, 51374018), National High Technology Research and Development Program of China (Grant No. 2013AA031601), and the Fundamental Research Funds for the Central Universities (FRF-SD-12-010A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Ming Wang.

Additional information

Manuscript submitted July 20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, SF., Wang, FM., Sun, GL. et al. DICTRA Simulation of Holding Time Dependence of NbC Size and Experimental Study of Effect of NbC on Austenite Grain Growth. Metall Mater Trans A 46, 3670–3678 (2015). https://doi.org/10.1007/s11661-015-2922-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2922-4

Keywords

Navigation