Skip to main content
Log in

Crystallization Kinetics and Phase Transformation Mechanisms in Cu56Zr44 Glassy Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The kinetics and phase selection mechanisms involved in the crystallization of an amorphous Cu-Zr alloy of eutectic composition (Cu56Zr44) were investigated using in situ high-energy X-ray diffraction (HEXRD), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC) under isothermal and constant heating rate conditions. In situ HEXRD results for 10 K/min (10 °C/min) heating indicate that the amorphous alloy devitrifies into CuZr2 and mainly Cu10Zr7 at the crystallization temperature of 725 K (452 °C). The sequence continues with the precipitation of CuZr (B2) at 1004 K (731 °C), where these three phases coexist until the decomposition of CuZr2 is observed at 1030 K (757 °C). The two equilibrium phases Cu10Zr7 and CuZr (B2) remain present on further heating until melting at the eutectic temperature for the Cu56Zr44 alloy. TEM investigation of the isothermal [705 K (432 °C)] crystallization sequence reveals primary nucleation and growth of the Cu10Zr7 phase, where growth of the Cu10Zr7 crystals is initially planar with a transition to a cellular morphology, associated with partitioning of Zr at the growth front. Related cellular structures and composition profiles are quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. [1] W. Klement, R. H. Willens, P. Duwez, Nature 187 (1960) 869-870.

    Article  Google Scholar 

  2. Y. C. Kim, J. C. Lee, P. R. Cha, J. P. Ahn, E. Fleury, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 437 (2006) 248-253.

    Article  Google Scholar 

  3. D.H. Xu, G. Duan, and W.L. Johnson: Phys. Rev. Lett., 2004, vol. 92.

  4. W. Zhang, A. Inoue, Journal of Materials Research 21 (2006) 234-241.

    Article  Google Scholar 

  5. W. Zhang, Q. S. Zhang, A. Inoue, Advanced Engineering Materials 10 (2008) 1034-1038.

    Article  Google Scholar 

  6. W. Zhang, Q. S. Zhang, A. Inoue, Journal of Materials Research 23 (2008) 1452-1456.

    Article  Google Scholar 

  7. Z. Altounian, G. H. Tu, J. O. Stromolsen, Journal of Applied Physics 53 (1982) 4755-4760.

    Article  Google Scholar 

  8. R. L. Freed, J. B. Vandersande, Journal of Non-Crystalline Solids 27 (1978) 9-28.

    Article  Google Scholar 

  9. R. L Kneller, Y. Khan, U. Gorres, Zeitschrift fur Metalkunde 77 (1986) 43-48.

    Google Scholar 

  10. [E. Kneller, Zeitschrift fur Metalkunde 77 (1986) 152-263.

    Google Scholar 

  11. C. Y. Zhang, K. F. Yao, Rare Metal Materials and Engineering 35 (2006) 158-160.

    Google Scholar 

  12. S. H. Zhou, R. E. Napolitano, Scripta Materialia 59 (2008) 1143-1146.

    Article  Google Scholar 

  13. S. H. Zhou, R. E. Napolitano, Acta Materialia 58 (2010) 2186-2196.

    Article  Google Scholar 

  14. S. G. Hao, C. Z. Wang, M. Z. Li, R. E. Napolitano, M. I. Mendelev, K. M. Ho, Computational Materials Science 49 (2010) 615-618.

    Article  Google Scholar 

  15. X. W. Fang, C. Z. Wang, S. G. Hao, M. J. Kramer, Y. X. Yao, M. I. Mendelev, Z. J. Ding, R. E. Napolitano, K. M. Ho, Scientific Reports 1 (2011) 194.

    Article  Google Scholar 

  16. I. Kalay, M. J. Kramer, R. E. Napolitano, Metall. Mater. Trans. A 42A (2011) 1144-1153.

    Article  Google Scholar 

  17. R. L. Freed, J. B. Vandersande, Acta Metallurgica 28 (1980) 103-121.

    Article  Google Scholar 

  18. H. R. Wang, X. Y. Teng, Z. Q. Shi, Y. F. Ye, G. H. Min, Acta Physica Sinica 50 (2001) 2192-2197.

    Google Scholar 

  19. T. E. Hosch, I. Kalay, Y. E. Kalay, M. J. Kramer, R. E. Napolitano, “Kinetics and mechanisms of isothermal devitrification in amorphous Cu50Zr50”, Metall. Mater. Trans. A 46A (2015) 600-613.

    Google Scholar 

  20. H. E. Kissinger, Journal of Research of the National Bureau of Standards 57 (1956) 217-221.

    Article  Google Scholar 

  21. H. E. Kissinger, Analytical Chemistry 29 (1957) 1702-1706.

    Article  Google Scholar 

  22. M. Avrami, Journal of Chemical Physics 7 (1939) 1103-1112.

    Article  Google Scholar 

  23. M. Avrami, Journal of Chemical Physics 8 (1940) 212-224.

    Article  Google Scholar 

  24. W. A. Johnson, R. F. Mehl, Transactions of the American Institute of Mining and Metallurgical Engineers 135 (1939) 416-442.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Science, Division of Materials Science and Engineering. The research was performed at the Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract DE-AC02-07CH11358. The high-energy X-ray experiments were performed at the MUCAT sector of the Advanced Photon Source, Argonne National Laboratory, under Grant No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkay Kalay.

Additional information

Manuscript submitted September 8, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalay, I., Kramer, M.J. & Napolitano, R.E. Crystallization Kinetics and Phase Transformation Mechanisms in Cu56Zr44 Glassy Alloy. Metall Mater Trans A 46, 3356–3364 (2015). https://doi.org/10.1007/s11661-015-2921-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2921-5

Keywords

Navigation