Skip to main content
Log in

Formation of Highly Misoriented Fragments at Hot Band Grain Boundaries During Cold Rolling of Interstitial-Free Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The deformation heterogeneities that form in the vicinity of prior hot band grain boundaries in a 75 pct cold-rolled interstitial-free steel have been investigated by 3D electron backscatter diffraction. Grain boundary-affected regions occupy a large fraction of the overall material volume. The coexistence of several features, such as steep orientation gradients up to 5 deg/μm, high-angle boundary networks, and thin, elongated grain boundary fragments, has confirmed the highly complex nature of these regions. Most notably, these thin boundary fragments were found to be significantly misoriented from any of the deformed grains immediately adjacent to the boundary. Overall, grain boundary regions adopt the so-called ‘deformation banding’ mode of deformations on both the micro (e.g., steep gradients)- and nano (e.g., thin fragments)-length scales. Grain boundary structures comprise the essential features to act as preferred sites for recrystallization. The discovery of numerous thin grain boundary fragments in the deformation microstructure provides a plausible explanation for the origin of recrystallized grains with orientations other than those found within the adjoining deformed grains in the vicinity of grain boundaries; this phenomenon has been commonly observed in texture data for many years but remained unexplained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, Oxford, 2004.

    Google Scholar 

  2. W.B. Hutchinson: Int. Met. Rev., 1984, vol. 29, pp. 25–42.

    Article  Google Scholar 

  3. M.R. Barnett: ISIJ Int., 1998, vol. 38, pp. 78–85.

    Article  Google Scholar 

  4. M.Z. Quadir and B.J. Duggan: Acta Mater., 2006, vol. 54, pp. 4337–50.

    Article  Google Scholar 

  5. Y.Y. Tse, G.L. Liu, and B.J. Duggan: Scripta Mater., 1999, vol. 42, pp. 25–30.

    Article  Google Scholar 

  6. B.J. Duggan and Y.Y. Tse: Acta Mater., 2004, vol. 52, 387–93.

    Article  Google Scholar 

  7. M.R. Barnett and J.J. Jonas: ISIJ Int., 1997, vol. 37, pp. 697–705.

    Article  Google Scholar 

  8. M.Z. Quadir: PhD Thesis, The University of Hong Kong, 2003.

  9. H. Inagaki: J. Jpn. Inst. Met., 1966, vol. 50, pp. 250–54.

    Google Scholar 

  10. H. Hayakawa and J. A. Szpunar: Acta Mater., 1997, vol. 45, pp. 3721–30.

    Article  Google Scholar 

  11. M.Z. Quadir and B.J. Duggan: IF Steel Conference, May 12–14, Tokyo, Japan, 2003, pp. 357–60.

  12. N. Afrin, M.Z. Quadir, M. Xu, and M. Ferry: Acta Mater., 2012, vol. 60, pp. 6288–6300.

    Article  Google Scholar 

  13. N. Afrin, M.Z. Quadir, L. Bassman, J.H. Driver, A. Albou, and M. Ferry: Scripta Mater., 2011, vol. 64, pp. 211–14.

    Article  Google Scholar 

  14. M.Z. Quadir, N. Mateescu, L. Bassman, W. Xu, and M. Ferry: Scripta Mater., 2007, vol. 57, pp. 977–80.

    Article  Google Scholar 

  15. Q.Z. Chen, A.H.W. Ngan, and B.J. Duggan: Proc. R. Soc. Lond. A. 2003, vol. 459, pp. 1661–85.

    Article  Google Scholar 

  16. Q.Z. Chen, M. Z. Quadir, and B.J. Duggan: Philos. Mag., 2006, vol. 23, pp. 3633–46.

    Article  Google Scholar 

  17. M.Z. Quadir and P.R. Munroe: Steel Res. Int., 2013, vol. 84, pp. 1320–24.

    Article  Google Scholar 

  18. K. Ushioda, S. Nakanishi, T. Morikawa, K. Higashida, Y. Suwa, and K. Murakami: Mater. Sci. Forum, 2013, vol. 753, pp. 58–65.

    Article  Google Scholar 

  19. G. Winther, D. Juul Jensen, and N. Hansen: Acta Mater., 1997, vol. 45, pp. 5059–68.

    Article  Google Scholar 

  20. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19.

    Article  Google Scholar 

  21. C.S. Barrett and L.H. Levenson: Trans. AIME, 1941, vol. 145, pp. 281–88.

    Google Scholar 

  22. H. Inagaki and T. Suda: Texture, 1972, vol. 1, pp. 129–40.

    Article  Google Scholar 

  23. H. Inagaki: ISIJ Int., 1994, vol. 34, pp. 313–21.

    Article  Google Scholar 

  24. L. Delannay, O.V. Mishin, D. Juul Jensen, and P. Van Houtte: Acta Mater., 2001, vol. 49, pp. 2441–62.

    Article  Google Scholar 

  25. Q. Xie, A. Van Bael, J. Sidor, J. Moerman, and P. Van Houtte: Acta Mater., 2014, vol. 69, pp. 175–86.

    Article  Google Scholar 

  26. P. Van Houtte, S. Li, M. Seefeldt, and L. Delannay: Int. J. Plast., 2005, vol. 21, pp. 589–624.

    Article  Google Scholar 

  27. G. Liu and B.J. Duggan: Metall. Mater. Trans. A, 2001, vol. 32, pp 125–34.

    Article  Google Scholar 

  28. I.L. Dillamore, C.J.E. Smith and T.W. Watson: Metal Sci. 1967, vol. 1, pp. 49-54.

    Article  Google Scholar 

  29. R.H. Goodenow: Trans. ASM, 1966, vol. 59, pp. 804-23.

    Google Scholar 

  30. A.R. Jones, B. Ralph and N. Hansen: Proc. R. Soc. Lond., 1979, vol. 368, pp. 345-57.

    Article  Google Scholar 

  31. J.C.M. Li: J. Appl. Phys., 1962, vol. 33, pp. 2958-65.

    Article  Google Scholar 

  32. R.A. Doharty, J.A. Szpunar: Acta Metall., 1984, vol. 32, pp. 1789-98.

    Article  Google Scholar 

  33. D. Juul, F.X. Lin, Y.B. Zhang and Y.H. Zhang: Mater. Sci. Forum, 2013, vol. 753, pp. 37-41.

    Article  Google Scholar 

  34. N. Hansen, D. Juul Jensen: Mater. Sci. Tech., 2011, vol. 27, pp. 1229-40.

    Article  Google Scholar 

  35. A. Godfrey, D. Juul Jensen, N. Hansen: Acta Mater., 2001, vol. 49, pp. 2429-40.

    Article  Google Scholar 

  36. M. Hua, C.I. Garcia and A.J. DeArdo: Scripta Mat., 1993, vol. 28, pp. 973-78.

    Article  Google Scholar 

  37. M. Hua, C.I. Garcia and A.J. DeArdo: Metall. and Mater. Trans. A, 1997, vol. 28, pp 1769-80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Zakaria Quadir.

Additional information

Manuscript submitted October 29, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrin, N., Quadir, M.Z. & Ferry, M. Formation of Highly Misoriented Fragments at Hot Band Grain Boundaries During Cold Rolling of Interstitial-Free Steel. Metall Mater Trans A 46, 2956–2964 (2015). https://doi.org/10.1007/s11661-015-2878-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2878-4

Keywords

Navigation