Skip to main content
Log in

A New Damage Constitutive Model for Thermal Deformation of AA6111 Sheet

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hot tensile tests were conducted using a Gleeble 1500, at the temperature range of 623 K to 823 K (350 °C to 550 °C) and strain rate range of 0.1 to 10 s−1. Flow stress is significantly affected by temperature and strain rate. As strain increases; the flow stress first rapidly increases, subsequently maintains a steady state, and finally drops sharply because of damage evolution. The features and mechanism of the damage were studied utilizing a scanning electron microscope. Micro-void nucleation, growth, and coalescence result in the failure of the hot-formed specimen. A damage equation based on continuum damage mechanics and damage mechanism in hot metal forming was proposed. A unified viscoplastic damage model coupled with strain, strain rate, temperature, dislocation, hardening, damage, damage rate, and so on was developed and calibrated for AA6111 using Genetic Algorism Tool in three steps. This model can be used to describe viscoplastic flow behavior and damage evolution at various temperatures and strain rates. The model was implemented into the finite element (FE) model in ABAQUS platform via the variable user material subroutine. Thus, the FE model could be employed to study the damage distribution and the effects of blank holder force (BHF) and forming velocity on hot cylindrical deep drawing. It is revealed that lower BHF and higher velocity are beneficial for drawability. A good agreement between simulated and experimental results has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Tewari, S. Vijayalakshmi, S. Tiwari, P. Biswas, S. Kim, R.K. Mishra, R. Kubic, and A.K. Sachdev: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2382-2398.

    Article  Google Scholar 

  2. C.D. Marioara, S.J. Andersen, J. Røyset, O. Reiso, S. Gulbrandsen-Dahl, T. Nicolaisen, I. Opheim, J.F. Helgaker, and R. Holmestad: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2938-2949.

    Article  Google Scholar 

  3. N. Anjabin, A.K. Taheri, and H.S. Kim: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5853-5860.

    Article  Google Scholar 

  4. Y. Tu, H. Qian, X. Zhou, and J. Jiang: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1883-1891.

    Article  Google Scholar 

  5. J. Zhou, B. Wang, J. Lin, and L. Fu: Arch. Civ. Mech. Eng, 2013, vol. 13, pp. 401-411.

    Article  Google Scholar 

  6. C. Poletti, T. Wójcik, and C. Sommitsch: Metall. Mater. Trans. A, 2013, vol. 44, pp. 1577-1586.

    Article  Google Scholar 

  7. L. Shi, H. Yang, L.G. Guo, and J. Zhang: Mater. Design, 2014, vol. 54, pp. 576-581.

    Article  Google Scholar 

  8. L. Li, Y.C. Lin, H. Zhou, and Y. Jiang: Comp. Mater. Sci., 2013, vol. 73, pp. 72-78.

    Article  Google Scholar 

  9. M.J. Roy, D.M. Maijer, and L. Dancoine: Mater. Sci. Eng. A, 2012, vol. 548, pp. 195-205.

    Article  Google Scholar 

  10. J. Li, F. Li, J. Cai, R. Wang, Z. Yuan, and G. Ji: Comp. Mater. Sci., 2013, vol. 71, pp. 56-65.

    Article  Google Scholar 

  11. J. Lin, B.H. Cheong, and X. Yao: J. Mater. Process. Tech., 2002, vol. 125–126, pp. 199-205.

    Google Scholar 

  12. Y. Estrin: J. Mater. Process. Tech., 1998, vol. 80–81, pp. 33-39.

    Article  Google Scholar 

  13. Ø. Grong and H.R. Shercliff: Prog. Mater. Sci., 2002, vol. 47, pp. 163-282.

    Article  Google Scholar 

  14. M. Zhou and F. P. E. Dunne: J. Strain Anal. Eng. Des., 1996, vol. 31, pp. 187-196.

    Article  Google Scholar 

  15. J. Lin and J. Yang: Int. J. Plasticity, 1999, vol. 15, pp. 1181-1196.

    Article  Google Scholar 

  16. H.R. RezaeiAshtiani, M.H. Parsa, and H. Bisadi: Mater. Sci. Eng. A, 2012, vol. 545, pp. 61–67.

    Article  Google Scholar 

  17. D. Lassance, D. Fabregue, F. Delannay, and T. Pardoen: Prog. Mater. Sci., 2007, vol. 52, pp. 62-129.

    Article  Google Scholar 

  18. M.S. Mohamed, A.D. Foster, J. Lin, D.S. Balint, and T.A. Dean: Int. J. Mach. Tools Manuf., 2012, vol. 53, pp. 27-38.

    Article  Google Scholar 

  19. J. Lin: Int. J. Damage Mech., 2005, vol. 14, pp. 299-319.

    Article  Google Scholar 

  20. S. Thuillier, N. Le Maout, and P.Y. Manach: Mater. Design, 2011, vol. 32, pp. 2049-2057.

    Article  Google Scholar 

  21. Y.F. Lung, M.C. Lin, H.C. Lin, and K.M. Lin: Mater. Design, 2011, vol. 32, pp. 4369-4375.

    Article  Google Scholar 

  22. M.A. Khaleel, H.M. Zbib, and E.A. Nyberg: Int. J. Plasticity, 2001, vol. 17, pp. 277-296.

    Article  Google Scholar 

  23. Y. Liu and J. Lin: J. Mater. Process. Technol., 2003, vol. 143–144, pp. 723–28.

    Article  Google Scholar 

  24. R.P. Garrett, J. Lin, and T.A. Dean: Int. J. Plasticity, 2005, vol. 21, pp. 1640-1657.

    Article  Google Scholar 

  25. J. Lin and T.A. Dean: J. Mater. Process. Tech., 2005, vol. 167, pp. 354-362.

    Article  Google Scholar 

  26. H. Agarwal, A.M. Gokhale, S. Graham, and M.F. Horstemeyer: Mater. Sci. Eng. A, 2003, vol. 341, pp. 35-42.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (No. P2014-15), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120006110017) and Beijing Laboratory of Metallic Materials and Processing for Modern Transportation. The authors are also grateful to Professor Jianguo Lin, Royal Academy of Engineering and Department of Mechanical Engineering, Imperial College, UK for the guidance and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyu Wang.

Additional information

Manuscript submitted January 3, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Wang, B., Bian, J. et al. A New Damage Constitutive Model for Thermal Deformation of AA6111 Sheet. Metall Mater Trans A 46, 2748–2757 (2015). https://doi.org/10.1007/s11661-015-2823-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2823-6

Keywords

Navigation