Skip to main content
Log in

Resistance of Nanostructured Fe-Cr Alloys to Oxidative Degradation: Role of Zr and Cr Contents

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article investigates the effect of grain size and Cr concentration on the oxidation resistance of nanocrystalline Fe-Cr alloys having varying Cr contents between 2 and 10 wt pct. The results have been compared with microcrystalline Fe-Cr alloys with 10 and 20 wt pct Cr. Pellets of nanocrystalline and microcrystalline Fe-Cr alloys were prepared by mechanical alloying followed by hot compaction and sintering, and then oxidized at 823 K (550 °C) for 150-hours. Oxidation kinetics was determined by measuring the weight gain during oxidation, and the post-oxidation characterization of the oxide scales was performed using secondary ion mass spectroscopy. The chromium content at the inner oxide scale of nanocrystalline Fe-Cr alloys (with >7 pct Cr) was found to be comparable with that of microcrystalline 20 pctCr alloy, which suggests that nanocrystalline grain size distribution can be exploited to develop highly oxidation resistant alloys with much lower amounts of expensive alloying element (Cr). A mechanistic understanding of the high temperature oxidation in nanostructured alloys has been presented and the critical amount of bulk Cr content required to form a protective chromia layer has been calculated. The paper also investigates the role of a reactive element Zr on the high temperature oxidation resistance of nanocrystalline Fe-Cr. The beneficial effect is more pronounced at low bulk Cr (2 to 4 pct) concentrations (compared to higher Cr (>7 pct) concentration), however, at low bulk Cr, insufficient Cr enrichment occurs to establish a protective chromium oxide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. A. Karimpoor, U. Erb, K. T. Aust and G. Palumbo, Scr. Mater., 2003, vol. 49(7), pp. 651-656.

    Article  Google Scholar 

  2. S. Cheng, E. Ma, Y. M. Wang, L. J. Kecskes, K. M. Youssef, C. C. Koch, U. P. Trociewitz and K. Han, Acta Mater., 2005, vol. 53(5), pp. 1521-1533.

    Article  Google Scholar 

  3. C. C. Koch, K. M. Youssef, R. O. Scattergood and K. L. Murty, Adv. Eng. Mater., 2005, vol. 7(9), pp. 787-794.

    Article  Google Scholar 

  4. K. M. Youssef, R. O. Scattergood, K. L. Murty and C. C. Koch, Appl. Phys. Lett., 2004, vol. 85(6), pp. 929-931.

    Article  Google Scholar 

  5. J.R. Groza: in Nanostructured Materials: Processing, Properties, and Applications, C.C. Koch, ed., William Andrew Pub., Norwich, NY, 2007.

  6. J. H. Choi, K. I. Moon, J. K. Kim, Y. M. Oh, J. H. Suh and S. J. Kim, Journal of Alloys and Compounds, 2001, vol. 315(1-2), pp. 178-186.

    Article  Google Scholar 

  7. C. Suryanarayana, F. Froes and G. Korth, Metall (1997). Mater. Trans. A. 28, 293-302.

    Article  Google Scholar 

  8. S. K. Vajpai, B. V. Mahesh and R. K. Dube (2009) J. Alloys Compd, 476(1-2), 311-317.

    Article  Google Scholar 

  9. G. Korth and R. Williamson (1995) Metall. and Mater. Trans. A. 26(10), 2571-2578.

    Article  Google Scholar 

  10. S. K. Vajpai, R. K. Dube and A. Tewari (2008) Metall. and Mater. Trans. A, 39(11), 2725-2735.

    Article  Google Scholar 

  11. Y. Liu and W. Liu (2007) J. Alloys Compd. 440(1-2), 154-157.

    Article  Google Scholar 

  12. K. I. Moon and K. S. Lee (1999) J. Alloys Compd, 291(1-2), 312-321.

    Article  Google Scholar 

  13. Y. Ji, M. Kallio and T. Tiainen, Scr. Mater., 2000, vol. 42(11), pp. 1017-1023.

    Article  Google Scholar 

  14. B. V. Mahesh, R. K. Singh Raman and C. C. Koch, J. Mater. Sci., 2012, vol. 47(22), pp. 7735-7743.

    Article  Google Scholar 

  15. B. V. Mahesh, R. K. Singh Raman, R. O. Scattergood and C. C. Koch, Mater. Sci. Eng. A, 2013, vol. 574, pp. 235-242.

    Article  Google Scholar 

  16. A. U. Seybolt, Journal of the Electrochemical Society, 1960, vol. 107(3), pp. 147-156.

    Article  Google Scholar 

  17. K. Ledjeff, A. Rahmel and M. Schorr, Oxid. Met., 1981, vol. 15, pp. 485-493.

    Article  Google Scholar 

  18. S. Horibe and T. Nakayama, Corros. Sci., 1975, vol. 15, pp. 589.

    Article  Google Scholar 

  19. T. Nakayama and S. Horibe, J. Jap. Inst. Met., 1973, vol. 37, pp. 1313.

    Google Scholar 

  20. K. Sasa and T. Nakayama, Corros. Sci., 1977, vol. 17, pp. 783.

    Article  Google Scholar 

  21. C. S. Giggins and F. S. Pettit, Metall. Trans., 1969, vol. 245, pp. 2509.

    Google Scholar 

  22. M. D. Merz, Metall. Trans. A, 1979, vol. 10, pp. 71.

    Article  Google Scholar 

  23. S. N. Basu and G. J. Yurek, Oxid. Met., 1991, vol. 36, pp. 28.

    Article  Google Scholar 

  24. R. K. Singh Raman and R. K. Gupta, Corros. Sci., 2009, vol. 51(2), pp. 316-321.

    Article  Google Scholar 

  25. R. K. Singh Raman, R. K. Gupta and C. C. Koch, Phil. Mag. A, 2010, vol. 90(23), pp. 3233 - 3260.

    Article  Google Scholar 

  26. R.K. Singh Raman and P. Singh: in Nanocrystalline Structure for Oxidation Resistance at Moderate Temperatures, V.S. Saji and R. Cook, eds., Woodhead Publishing, Cambridge, U.K., 2011, pp. 129–45.

  27. P. Kofstad, High Temperature Corrosion. Vol. 6. 1988: Elsevier Applied Science and Publishers Ltd, New York.

    Google Scholar 

  28. A. Rahmel, G. C. Wood, P. Kofstad and D. L. Douglass, Oxid. Met., 1985, vol. 23, pp. 253-337.

    Article  Google Scholar 

  29. G. C. Wood, Corros. Sci., 1962, vol. 2(3), pp. 173-196.

    Article  Google Scholar 

  30. J. Antill and K. Peakall, J. Iron and Steel Inst., 1967, vol. 205, pp. 1136.

    Google Scholar 

  31. A. Funkenbusch, J. Smegill and N. Bornstein, Metall. Trans. A, 1985, vol. 16, pp. 1164-1166.

    Article  Google Scholar 

  32. C. S. Giggins, B. Kear, F. S. Pettit and J. K. Tien, Metall. Trans., 1975, vol. 5, pp. 1685.

    Article  Google Scholar 

  33. J. K. Tien and F. S. Pettit, Metall. Trans., 1972, vol. 3, pp. 1587.

    Article  Google Scholar 

  34. C. E. Lowell, D. L. Deadmore and J. D. Whittenberger, Oxid. Met., 1982, vol. 17, pp. 205-212.

    Article  Google Scholar 

  35. T. N. Rhys-Jones, H. J. Grabke and H. Kudielka (1987) Mater. and Corros. 38(2), 65-72.

    Article  Google Scholar 

  36. J. Stringer, A. Hed, G. Wallwork and B. Wilcox, Corros. Sci., 1972, vol. 32(4), pp. 511-516.

    Google Scholar 

  37. D. P. Whittle, M. E. El-Dahshan and J. Stringer, Corros. Sci., 1977, vol. 177(11), pp. 879-891.

    Article  Google Scholar 

  38. F. A. Golightly, F. H. Stott and G. C. Wood, Oxid. Met., 1976, vol. 10, pp. 163-187.

    Article  Google Scholar 

  39. B.A. Pint: Met. Ceram. Div., 2010, vol. 18(8), pp. 2159–68.

    Google Scholar 

  40. V. Kochubey: Effect of Ti, Hf and Zr Additions and Impurity Elements on the Oxidation Limited Lifetime of Thick and Thin-Walled FeCrAlY Components Ruhr-Universitat, Bochum, 2005.

  41. D. P. Whittle and J. Stringer (1980) Phil. Trans. of the R. Soc. Lond. A. 295, 309-329.

    Article  Google Scholar 

  42. C. Anghel: in Materials Science and Engineering, KTH, Stockholm, Sweden, 2004.

  43. Z. B. Wang, N. R. Tao, W. P. Tong, J. Lu and K. Lu, Acta Mater., 2003, vol. 51(14), pp. 4319-4329.

    Article  Google Scholar 

  44. K. Kuroda, P. A. Labun, G. Welsch and T. E. Mitchell, Oxid. Met., 1983, vol. 19, pp. 117-127.

    Article  Google Scholar 

  45. G. E. Rhead, Trans. Faraday Soc., 1965, vol. 61, pp. 797.

    Article  Google Scholar 

  46. C. Wagner, J. Electrochem. Soc., 1952, vol. 369, pp. 103.

    Google Scholar 

  47. C. Wagner, Z. Elektrochem., 1959, vol. 63, pp. 772.

    Google Scholar 

  48. J. H. Swisher and E. T. Turkdogan, Trans. AIME, 1967, vol. 239, pp. 426.

    Google Scholar 

  49. R. Braun and M. Feller-Kniepmeier: Phys. Status Solid. A, 1985, vol. 90 (2), pp. 553–61.

  50. R.K. Gupta, N. Birbillis, and J. Zhang: Oxidation Resistance of Nanocrystalline Alloys, InTech, 2012. ISBN: 978-953-51-0467-4.

  51. A. W. Bowen and G. Leak, Metall. Trans., 1970, vol. 1, pp. 1695.

    Article  Google Scholar 

  52. I. Kaur, W. Gust and L. Kozma, Handbook of grain and interphase boundary diffusion data. 1989, Stuttgart: Ziegler Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Singh Raman.

Additional information

Manuscript submitted February 4, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, B.V., Singh Raman, R.K. & Koch, C.C. Resistance of Nanostructured Fe-Cr Alloys to Oxidative Degradation: Role of Zr and Cr Contents. Metall Mater Trans A 46, 1814–1824 (2015). https://doi.org/10.1007/s11661-015-2765-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2765-z

Keywords

Navigation